期刊文献+

Protective Effects of Berberine on Nonalcoholic Fatty Liver Disease in db/db Mice via AMPK/SIRT1 Pathway Activation

下载PDF
导出
摘要 Objective Berberine(BBR)has emerged as a promising therapeutic agent for nonalcoholic fatty liver disease(NAFLD).This study aims to elucidate the underlying molecular mechanisms.Methods In this study,db/db mice were chosen as an animal model for NAFLD.A total of 10 healthy C57BL/6J mice and 30 db/db mice were randomly allocated to one of 4 groups:the normal control(NC)group,the diabetic control(DC)group,the Metformin(MET)therapy group,and the BBR therapy group.The total cholesterol(TC),triacylglycerol(TG),low-density lipoprotein cholesterol(LDL-c),high-density lipoprotein cholesterol(HDL-c),aspartate aminotransferase(AST)and alanine aminotransferase(ALT)levels in the serum were measured.The glutathione peroxidase(GSH-Px),glutathione(GSH),malondialdehyde(MDA),superoxide dismutase(SOD),catalase(CAT),interleukin(IL)-1β,tumor necrosis factor(TNF)-αand monocyte chemotactic protein 1(MCP-1)levels in liver tissue were measured.Hematoxylin and eosin(H&E),acid-Schiff(PAS)and TUNEL stanning was performed for histopathological analysis.Western blotting and immunohistochemistry were conducted to detect the expression levels of key proteins in the AMPK/SIRT1 pathway.Results BBR could improve lipid metabolism,attenuate hepatic steatosis and alleviate liver injury significantly.The excessive oxidative stress,high levels of inflammation and abnormal apoptosis in db/db mice were reversed after BBR intervention.BBR clearly changed the expression of AMP-activated protein kinase(AMPK)/Sirtuin 1(SIRT1),and their downstream proteins.Conclusion BBR could reverse NAFLD-related liver injury,likely by activating the AMPK/SIRT1 signaling pathway to inhibit oxidative stress,inflammation and apoptosis in hepatic tissue.
出处 《Current Medical Science》 SCIE CAS 2024年第5期902-911,共10页 当代医学科学(英文)
基金 supported by grants from the National Natural Science Foundation of China(No.81803799) Hubei Province Natural Science Foundation of China(No.2022CFB092).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部