摘要
Nanodrugs capable of aggregating in the tumor microenvironment(TME)have demonstrated great efficiency in improving the therapeutic outcome.Among vari-ous approaches,the strategy utilizing electrostatic interaction as a driving force to achieve intratumor aggregation of nanodrugs has attracted great attention.However,the great difference between the two nanodrugs with varied physicochemical prop-erties makes their synchronous transport in blood circulation and equal-opportunity tumor uptake impossible,which significantly detracts from the beneficial effects of nanodrug aggregation inside tumors.We herein propose a new strategy to construct a pair of extremely similar nanodrugs,referred to as“twins-like nanodrugs(TLNs)”,which have identical physicochemical properties including the same morphology,size,and electroneutrality to render them the same blood circulation time and tumor entrance.The 1:1 mixture of TLNs(TLNs-Mix)intravenously injected into a mouse model efficiently accumulates in tumor sites and then transfers to oppositely charged nanodrugs for electrostatic interaction-driven coalescence via responding to matrix metalloproteinase-2(MMP-2)enriched in tumor.In addition to enhanced tumor retention,the thus-formed micron-sized aggregates show high echo intensity essen-tial for ultrasound imaging as well as ultrasound-triggered penetrative drug delivery.Owing to their distinctive features,the TLNs-Mix carrying sonosensitizer,immune adjuvant,and ultrasound contrast agent exert potent sonodynamic immunotherapy against hypovascular hepatoma,demonstrating their great potential in treating solid malignancies.
基金
Key Areas Research and Development Program of Guangzhou,Grant/Award Number:202007020006
National Natural Science Foundation of China,Grant/Award Numbers:51933011,31971296,52173125,82102194
Natural Science Foundation of the Guangdong Province,Grant/Award Numbers:2021A1515111006,2023A1515011822。