期刊文献+

泡状流三维模拟及壁面润滑力模型比较 被引量:1

Three-Dimensional Numerical Simulation on Bubbly Flow and Comparison of Wall Lubrication Force
原文传递
导出
摘要 采用双流体模型耦合界面浓度输运方程,对竖直上升管内泡状流进行了三维模拟。结合Wang(1987)的泡状流测量实验,研究了不同壁面润滑力作用下管道界面含气率的分布特征。通过实验测量结果与各种壁面润滑力模型计算结果的对比,分析了各种模型对含气率分布的影响。结果表明,Tomiyama及Frank的模型具有相似的特性,高估了壁面润滑力的大小。而Antal的模型作用范围过于狭小,对气泡分布的峰值的预测偏差很大。Hosokawa的模型则较好地预测了本文工况含气率的分布。 Three-dimensional numerical simulation was carried out on bubbly flow in a vertical pipe by the two-fluid model coupled with the interfacial area transport equation(IATE).According to the experiment of Wang(1987),the predicted cross-sectional void fraction distribution and the performance of different wall lubrication models were studied.Based on the experimental data,the effects of the wall lubrication models were analyzed.The results demonstrated that the characteristics of the Tomiyama model and the Frank model are similar and both of them overestimate the wall lubrication force.Moreover,the active range of the Antal model is too small,resulting in a large discrepancy on the peak value of the void fraction.The Hosokawa model produces better results on the void fraction profile for the cases studied in this paper.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2014年第10期1979-1983,共5页 Journal of Engineering Thermophysics
基金 中海油国家科技重大专项(No.2011ZX05026-004-02) 国家自然科学基金重点项目(No.51236007) 国家自然科学基金创新群体项目(No.51121092)
关键词 泡状流 壁面润滑力 双流体模型 界面浓度输运方程 bubbly flow wall lubrication force two-fluid model interfacial area transport equation
  • 相关文献

同被引文献22

  • 1LIAO Y,LUCAS D.Investigations on bubble-induced turbulence modeling for vertical pipe bubbly flows[C]//201220th International Conference on Nuclear Engineering and the ASME 2012 Power Conference.American Society of Mechanical Engineers,2012:519-527.
  • 2TOMIYAMA A,TAMAI H,ZUN I,et al.Transverse migration of single bubbles in simple shear flows[J].Chem.Eng.Sci.,2002,57:1849-1858.
  • 3SHAWKAT M E,Ching C Y,Shoukri M.Bubble and liquid turbulence characteristics of bubbly flow in a large diameter vertical pipe[J].International Journal of Multiphase Flow,2008,34(8):767-785.
  • 4LUCAS D,KREPPER E,PRASSER H M.Prediction of radial gas profiles in vertical pipe flow on the basis of bubble size distribution[J].International Journal of Thermal Sciences,2001,40(3):217-225.
  • 5OHNUKI A,AKIMOTO H.Experimental study on transition of flow pattern and phase distribution in upward air-water two-phase flow along a large vertical pipe[J].International journal of multiphase flow,2000,26(3):367-386.
  • 6ANTAL S P,LAHEY R T,FLAHERTY J E.Analysis of phase distribution in fully developed laminar bubbly two-phase flow[J].International Journal of Multiphase Flow,1991,17(5):635-652.
  • 7TOMIYAMA A.Struggle with computational bubble dynamics[J].Multiphase Science and Technology,1998,10(4):369-405.
  • 8HOSOKAWA S,TOMIYAMA A,MISAKI S,et al.Lateral migration of single bubbles due to the presence of wall[C]//ASME 2002 Joint US-European Fluids Engineering Division Conference.American Society of Mechanical Engineers,2002:855-860.
  • 9HOSOKAWA S,TOMIYAMA A.Bubble-induced pseudo turbulence in laminar pipe flows[J].International Journal of Heat and Fluid Flow,2013,40:97-105.
  • 10SATO Y,Sekoguchi K.Liquid velocity distribution in two-phase bubble flow[J].International Journal of Multiphase Flow,1975,2(1):79-95.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部