期刊文献+

Initial orbit determination of BDS-3 satellites based on new code signals 被引量:3

Initial orbit determination of BDS-3 satellites based on new code signals
原文传递
导出
摘要 For the two newly launched satellites(PRN number 27 and 28) of the future global BeiDou navigation satellite system(BDS-3), there is no available broadcast ephemeris data and other initial orbit information, but the initial orbit is the fundamental of the comprehensive analysis of the satellites and their signals. Precise orbit determination(POD) also requires determination of a priori initial value with a certain precision in order to avoid problems such as filter divergence during POD. Compared with the Newton iteration method, which relies on the initial value, this study utilizes the Bancroft algorithm to directly solve the nonlinear equations with the advantage of numerical stability. The initial orbits of these two satellites are calculated based on new code signals, and their results are analyzed and discussed. The experimental results show that, with the exception of very few epochs, when the new code signal is utilized, the median and robust variance factor of the observed residuals computed using pseudo-range observations and the solved initial orbits are less than 4 and 2 m, respectively. It also shows that this solution can be used for rapid initial orbit recovery after maneuvers of the new BeiDou satellites. For the two newly launched satellites(PRN number 27 and 28) of the future global BeiDou navigation satellite system(BDS-3), there is no available broadcast ephemeris data and other initial orbit information, but the initial orbit is the fundamental of the comprehensive analysis of the satellites and their signals. Precise orbit determination(POD) also requires determination of a priori initial value with a certain precision in order to avoid problems such as filter divergence during POD. Compared with the Newton iteration method, which relies on the initial value, this study utilizes the Bancroft algorithm to directly solve the nonlinear equations with the advantage of numerical stability. The initial orbits of these two satellites are calculated based on new code signals, and their results are analyzed and discussed. The experimental results show that, with the exception of very few epochs, when the new code signal is utilized, the median and robust variance factor of the observed residuals computed using pseudo-range observations and the solved initial orbits are less than 4 and 2 m, respectively. It also shows that this solution can be used for rapid initial orbit recovery after maneuvers of the new BeiDou satellites.
出处 《Geodesy and Geodynamics》 2018年第4期342-346,共5页 大地测量与地球动力学(英文版)
基金 supported by the Collaborative Precision Positioning Project funded by the Ministry of Science and Technology of China (No.2016YFB0501900) China Natural Science Funds (No.41231064,41674022,41574015)
关键词 New-generation BeiDou satellites New code signals Initial orbit determination Bancroft New-generation BeiDou satellites New code signals Initial orbit determination Bancroft
  • 相关文献

参考文献1

二级参考文献9

共引文献73

同被引文献14

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部