期刊文献+

基于射线坡度阈值的城市地面分割算法 被引量:11

Urban Ground Segmentation Algorithm Based on Ray Slope Threshold
原文传递
导出
摘要 针对城市环境激光雷达点云地面分割过程中坡度路面、障碍物和地面交界处存在欠分割与过分割的问题,提出一种应用于不同城市场景的地面分割算法。该算法首先利用激光雷达水平角分辨率将点云进行线序化排列,再利用射线前后点的距离比去除悬空异常噪点;随后借助射线点距离与坡度信息自适应调整高度阈值;最后利用调整后的全局与局部高度阈值进行地面分割。对3种不同类型的城市路面进行的实验验证了本文算法的有效性,该算法在不同城市场景下均可区分障碍物与地面交界处的点云与坡面,平均分割准确度达98%,平均耗时2 ms。 We propose a ground segmentation algorithm for various urban environments to overcome the problems of under-segmentation and over-segmentation on sloped roads,obstacles and ground junctions.First,the point cloud is linearly arranged based on the horizontal angular resolution of the lidar.Then,the ratio of the distance from front and rear points to the lidar is used to remove abnormal noise,and the height threshold is adaptively adjusted by using the distance from each point to the lidar and slope value.Finally,ground segmentation is performed using the adjusted global and local height thresholds.Through experimental analysis of three different types of urban roads,it is verified that the proposed algorithm can effectively distinguish the point cloud between the obstacle and ground and slope surfaces in different urban scenarios.The segmentation accuracy can reach 98%on average,and the average time consumed is 2 ms.
作者 李炯 赵凯 白睿 朱愿 徐友春 Li Jiong;Zhao Kai;Bai Rui;Zhu Yuan;Xu Youchun(Army Military Transportation University of PLA,Tianjin300161,China;Institute of Military Transportation of PLA,Tianjin300161,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2019年第9期352-360,共9页 Acta Optica Sinica
基金 国家自然科学基金(91220301) 国家重点基础研发计划项目(2016YFB0100903)
关键词 图像处理 激光雷达 地面分割 点云去噪 射线坡度阈值法 image processing LIDAR ground segmentation point-cloud denoising ray slope threshold method
  • 相关文献

参考文献6

二级参考文献42

  • 1陈福增.多传感器数据融合的数学方法[J].数学的实践与认识,1995,25(2):11-16. 被引量:76
  • 2Petrovskaya A, Thrun S. Model based vehicle detection andtracking for autonomous urban driving[Jj. Autonomous Robots,2009,26(2/3): 123-139.
  • 3Momemerlo M, Becker J, Bhat S, et al. Junior: The Stanfordentry in the urban challenge[J|. Journal of Field Robotics, 2008,25(9): 569-597.
  • 4Ferguson D, Darms M, Urmson C, et al. Detection, predic-tion, and avoidance of dynamic obstacles in urban environ-ments[C]//lEEE Intelligent Vehicles Symposium. Piscataway,USA: IEEE, 2008: 1149-1154.
  • 5Urmson C, Anhalt J, Bagnell D, et al. Autonomous driving inurban environments: Boss and the urban challengejj]. Journalof Field Robotics, 2008,25(8): 425-466.
  • 6Mertz C, Navarro-Serment L E, MacLachlan R, et al. Mov-ing object detection with laser scanners[J]. Journal of FieldRobotics, 2013,30(1): 17-43.
  • 7Dorai C, Wang G,Jain A K, et al. Registration and integra-tion of multiple object views for 3D model construction|J].IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 1998,20(1): 83-89.
  • 8Hirnmelsbach M, Muller A,Liittel T, et al. LIDAR-based 3D ob-ject perception [C ]//Proceedings of 1st International Workshopon Cognition for Technical Systems. 2008.
  • 9Pears N E. Feature extraction and tracking for scanning rangesensors[J]. Robotics and Autonomous Systems, 2000, 33(1):43-58.
  • 10Tubbs J D. A note on binary template matching[J].PatternRecognition, 1989,22(4): 359-365.

共引文献128

同被引文献75

引证文献11

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部