期刊文献+

Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion 被引量:7

Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion
原文传递
导出
摘要 A mode-locked thulium-doped fiber laser(TDFL) based on nonlinear polarization rotation(NPR) with different net anomalous dispersion is demonstrated. When the cavity dispersion is-1.425 ps^2, the noise-like(NL) pulse with coherence spike width of 406 fs and pulse energy of 12.342 nJ is generated at a center wavelength of 2003.2 nm with 3 dB spectral bandwidth of 23.20 nm. In the experimental period of 400 min, the 3 dB spectral bandwidth variation, the output power fluctuation, and the central wavelength shift are less than 0.06 nm, 0.04 d B, and0.4 nm, respectively, indicating that the NPR-based TDFL operating in the NL regime holds good long-term stability. A mode-locked thulium-doped fiber laser (TDFL) based on nonlinear polarization rotation (NPR) with different net anomalous dispersion is demonstrated. When the cavity dispersion is -1.425 ps(2), the noise-like (NL) pulse with coherence spike width of 406 fs and pulse energy of 12.342 nJ is generated at a center wavelength of 2003.2 nm with 3 dB spectral bandwidth of 23.20 nm. In the experimental period of 400 min, the 3 dB spectral bandwidth variation, the output power fluctuation, and the central wavelength shift are less than 0.06 nm, 0.04 dB, and 0.4 nm, respectively, indicating that the NPR-based TDFL operating in the NL regime holds good long-term stability. (C) 2016 Chinese Laser Press
出处 《Photonics Research》 SCIE EI 2016年第6期318-321,共4页 光子学研究(英文版)
基金 Fundamental Research Funds for the Central Universities(2016YJS034)
  • 相关文献

参考文献3

二级参考文献55

  • 1M. E. Fermann and I. Hartl, Nat. Photon. 7, 868 (2013).
  • 2S. D. Jackson, Nat. Photon. 6, 423 (2012).
  • 3H. Lfi, P. Zhou, H. Xiao, X. Wang, and Z. Jiang, Chin. Opt. Lett. 10, 051403 (2012).
  • 4C. Guo, D. Shen, J. Long, and F. Wang, Chin. Opt. Lett. 10, 091406 (2012).
  • 5M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, Opt. Lett. 33, 1336 (2008).
  • 6L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
  • 7Q. Wang, J. Geng, Z. Jiang, T. Luo, and S. Jiang, IEEE Photon. Technol. Lett. 23 682 (2011).
  • 8L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
  • 9F. 5. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
  • 10A. Chong, J. Buckley, W. Remomger, and F. Wise, Opt. Express 14, 10095 (2006).

共引文献4

同被引文献20

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部