期刊文献+

Theoretical aspects and sensing demonstrations of cone-shaped inwall capillary-based microsphere resonators 被引量:6

Theoretical aspects and sensing demonstrations of cone-shaped inwall capillary-based microsphere resonators
原文传递
导出
摘要 In this paper, a detailed theoretical study on the characteristics of cone-shaped inwall capillary-based microsphere resonators is described and demonstrated for sensing applications. The maximum, minimum, slope, contrast, and width of the Fano resonance are analyzed. As the transmission coefficient of the capillary resonator increases, the absolute value of the slope of Fano resonances increases to reach its maximum, which is useful for sensors with an ultra-high sensitivity. There occurs another phenomenon of electromagnetically induced transparency when the reflectivity at the capillary–environment interface is close to 100%. We also experimentally demonstrated its capability for temperature and refractive index sensing, with a sensitivity of 10.9 pm∕°C and 431 d B∕RIU basedon the Fano resonance and the Lorentzian line shape, respectively. In this paper, a detailed theoretical study on the characteristics of cone-shaped inwall capillary-based microsphere resonators is described and demonstrated for sensing applications. The maximum, minimum, slope, contrast, and width of the Fano resonance are analyzed. As the transmission coefficient of the capillary resonator increases, the absolute value of the slope of Fano resonances increases to reach its maximum, which is useful for sensors with an ultra-high sensitivity. There occurs another phenomenon of electromagnetically induced transparency when the reflectivity at the capillary–environment interface is close to 100%. We also experimentally demonstrated its capability for temperature and refractive index sensing, with a sensitivity of 10.9 pm∕°C and 431 d B∕RIU basedon the Fano resonance and the Lorentzian line shape, respectively.
出处 《Photonics Research》 SCIE EI 2017年第5期507-511,共5页 光子学研究(英文版)
基金 National Natural Science Foundation of China(NSFC)(61377081,61675126)
  • 相关文献

参考文献3

二级参考文献19

  • 1D. Grobnic, S. J. Mihailov, D. Huimin, and C. W. Smelser, IEEE Photon. Technol. Lott. 18, 160 (2006).
  • 2H. Xuan, W. Jin, and S. Liu, Opt. Lett. 35, 85 (2010).
  • 3L. Xu, W. Han, P. Wang, and S. Wang, Chin. Opt. Lett. 12, 070602 (2014).
  • 4J.-L. Kou, J. Feng, L. Ye, F. Xu, and Y.-Q. Lu, Opt. Express 18, 14245 (2010).
  • 5Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, Opt. Express 15, 14123 (2007).
  • 6C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988).
  • 7T. Woo-Hu and L. Chun-Jung, J. Lightwave Technol. 19, 682(2001).
  • 8X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, Appl. Opt. 45, 7760 (2006).
  • 9G. Tang, J. Wei, W. Zhou, R. Fan, M. Wu, and X. Xu, Chin. Opt. Lett. 12, 090604 (2014).
  • 10L. Yuan, X. W. Lan, J. Huang, and H. Xiao, Adv. Sci. Technol. 90, 166 (2014).

共引文献10

同被引文献27

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部