摘要
For a fully chaotic two-dimensional(2D) microcavity laser, we present a theory that guarantees both the existence of a stable single-mode lasing state and the nonexistence of a stable multimode lasing state, under the assumptions that the cavity size is much larger than the wavelength and the external pumping power is sufficiently large. It is theoretically shown that these universal spectral characteristics arise from the synergistic effect of two different kinds of nonlinearities: deformation of the cavity shape and mode interaction due to a lasing medium. Our theory is based on the linear stability analysis of stationary states for the Maxwell–Bloch equations and accounts for single-mode lasing phenomena observed in real and numerical experiments of fully chaotic 2D microcavitylasers.
For a fully chaotic two-dimensional(2D) microcavity laser, we present a theory that guarantees both the existence of a stable single-mode lasing state and the nonexistence of a stable multimode lasing state, under the assumptions that the cavity size is much larger than the wavelength and the external pumping power is sufficiently large. It is theoretically shown that these universal spectral characteristics arise from the synergistic effect of two different kinds of nonlinearities: deformation of the cavity shape and mode interaction due to a lasing medium. Our theory is based on the linear stability analysis of stationary states for the Maxwell–Bloch equations and accounts for single-mode lasing phenomena observed in real and numerical experiments of fully chaotic 2D microcavitylasers.
基金
Funding.Waseda University(2017B-197)