摘要
The timing behavior and congestion behavior are two important goals in the performance-driven standard-cell placement. In this paper, we analyze the relationship between the timing and congestion behavior. We bring up a multi-step placement algorithm to reach the two goals. First, the timing-driven placement algorithm is used to find the global optimal solution. In the second step, the algorithm tries to decrease the maximum congestion while not deteriorating the timing behavior. We have implemented our algorithm and tested it with real circuits. The results show that the maximum delay can decrease by 30% in our timing-driven placement and in the second step the maximum congestion will decrease by 10% while the timing behavior is unchanged.
The timing behavior and congestion behavior are two important goals in the performance-driven standard-cell placement. In this paper, we analyze the relationship between the timing and congestion behavior. We bring up a multi-step placement algorithm to reach the two goals. First, the timing-driven placement algorithm is used to find the global optimal solution. In the second step, the algorithm tries to decrease the maximum congestion while not deteriorating the timing behavior. We have implemented our algorithm and tested it with real circuits. The results show that the maximum delay can decrease by 30% in our timing-driven placement and in the second step the maximum congestion will decrease by 10% while the timing behavior is unchanged.
基金
This work was supported by the National Natural Science Foundation of China (Grant No. 60076016)
and 973 National Key Project (Grant No. G1998030403).