期刊文献+

金属纳米线弯曲形状引起的量子电导相干振荡(英文) 被引量:2

Shape Induced Quantum Conductance Oscillation in a Metallic Nanowire
下载PDF
导出
摘要 利用自由电子模型和散射矩阵方法,研究两端直中间部分呈圆弧形弯曲的金属纳米线电导的量子相干振荡.发现低温下系统的电导在完全直金属纳米线电导常数下振荡,它起源于金属纳米线形状引起电子横向模式间的混合导致传导电子相干,这种效应在未来纳米电路工程设计中可能有重要应用价值. Using free-electron model and scattering matrix approach, investigated the electron transport properties of a curved metallic nanowire which is consist of two straight nanowires connected by a curving part with uniform wire cress section. We found that in the zero temperature limit the electrical conductance of the system oscillate below the conductance value of a straight wire, this shape induced quantum conductance oscillation may origin from the quantum coherence mixture between the transverse modes in the curving part of the system, and this effect may be important in the future's nano-scale circuit engineering.
出处 《湖南师范大学自然科学学报》 EI CAS 北大核心 2002年第4期38-41,共4页 Journal of Natural Science of Hunan Normal University
基金 TheresearchsupportedbytheScienceFoundationofHunanNormalUniversityunderGrand(2 0 0 0 6 2 7)
关键词 金属纳米线 弯曲形状 量子电导相干振荡 散射矩阵 自由电子模型 传导电子相干 Electric conductance Electron transport properties Oscillations Quantum theory
  • 相关文献

参考文献15

  • 1WEES B.Quantized conductance ofpoint contacts in a two-dimensional electron gas[J].Phys Rev Lett,1988,60:848-851.
  • 2KRANS J M,RUITENBEEK J M,FISUN V V.The signature of conductance quantisation inmetallic point contacts[J]. Nature,1995,375:767-768.
  • 3BAOLIN WANG,SHUANGYE YIN,GUANGHOU WANG.Novel structure and properties of goldnanowires[J].Phys Rev Lett,2001,86:2046-2050.
  • 4ZAGOSKIN A M.Driving-voltage-induced force oscillations in metal quantum-pointcontacts[J].Phys Rev,1998,B58;15827-15831.
  • 5BOGACHEK E N,SCHERBACOV A V,LANDMAN U.Thermpower of quantum nanowire in a magneticfield[J].Phys Rev,1996,B54;R11094-11097.
  • 6BLOM S.Free-electronmodel for mesoscopic force fluctuations in nanowires[J].PhysRev,1998,B57:8830-8833.
  • 7STAFFORD C A,BAERSWYL D,BüRKI J.Jellium model of metallic nanocohesion[J].PhysRev Lett,1997,79:2863-2866.
  • 8MA ZS,XIE X C.Higher harmonic generation in a mesoscopic conductor[J].PhysRev,2001,B63;125310-5.
  • 9HEREMANS J,THRUSH C M,LIN Y M.Transport properties of antimong nanowires[J].PhysRev,2001,B63:085408-8.
  • 10GRINCWAJG A,GORELIK L Y,KLEINER V Z.Photoconductance oscillations in atwo-dimensional quantum point contact[J].Phys Rev,1995,B52:12168-12178.

同被引文献29

  • 1熊易芬,卢峰.铜钯金属纤维复合材料的界面研究[J].贵金属,1994,15(2):10-22. 被引量:11
  • 2张志光,胡稳奇,王磊,孙安国,廖明.金属纤维抗菌作用的初步研究[J].湖南师范大学自然科学学报,1995,18(4):62-64. 被引量:2
  • 3马中水.介观物理基础和近期发展几个方面的简单介绍[J].物理,2007,36(2):98-129. 被引量:7
  • 4Fournier J B, Galatola P. Critical fluctuations of tense fluid membrane tubule[J].Physical Review Letters. 2007, 98(10): 018 103-018 106.
  • 5Okamoto M, Uda T, Takayanagi K. Quantum conductance of helical nanowires[J]. Physical Review (B), 2001, 64:033 303-03 307.
  • 6Wu H A. Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod [J]. Computational Materials Science, 2004, 31: 287-291.
  • 7Olendski O, Mikhailovska L. Localized-mode evolution in a curved planar waveguide with combined Dirichlet and Neumann boundary conditions[J]. Physical Review (E), 2003, 67:056 625-056 636.
  • 8Gravesena J, Willatzenb M, Quantum eigenstates of curved nanowire structures [J]. Physica (B), 2006, 371: 112-119.
  • 9Shevchenko S N, Kolesnichenko Yu A, Effect of curvature on conductance of the quantum wire [J]. Physics (E), 2002, 14: 177-179.
  • 10Huang W Q, Chen K Q, Shuai Z. Acoustie-phonon transmission and thermal conductance in a double-bend quantum waveguide[J]. Journal of Applied Physics, 2005, 98:093 524-09 353.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部