期刊文献+

基于波特间隔扩频的大数据传输技术优化

Optimization of big data transmission technology based on baud-spaced spread spectrum
下载PDF
导出
摘要 为了提高无线传感网络中大数据传输质量,文中提出一种基于波特间隔扩频的大数据传输信道均衡算法。采用直接序列扩频和波特间隔均衡技术进行无线传感器网络大数据传输的信道均衡设计,采用无线传感器量化融合跟踪方法进行无线传感器网络大数据传输的调制解调算法设计,根据大数据传输的码间干扰强度进行扩展Kalman滤波控制,利用无线传感器网络大数据传输信道的频域特性进行多径扩展,实现无线传感器网络大数据传输优化设计。仿真结果表明,采用该方法进行无线传感器网络大数据传输能有效降低数据传输的误比特率,提高无线传感器网络大数据传输的质量。 In order to improve the transmission quality of big data in wireless sensor networks,this paper presents an algorithm for the transmission channel equalization based on baud-spaced spread spectrum.The channel equalization of big data transmission in wireless sensor network is designed by using direct sequence spread spectrum(DSSS)and baud-spaced equalization technology.The modulation and demodulation algorithm of big data transmission in wireless sensor network is designed by using wireless sensor quantization fusion tracking method,and the extended Kalman filter control is carried out according to the intensity of inter-symbol interference transmitted by big data.By using the frequency domain characteristic of big data transmission channel in wireless sensor network,the optimal design is realized.The simulation results show that the proposed method can effectively reduce the bit error rate of data transmission and improve the transmission quality of big data wireless sensor network.
作者 林伟烜 LIN Wei-xuan(Guangzhou Huali Science and Technology Vocational College,Guangzhou 511325,China)
出处 《信息技术》 2019年第4期73-76,81,共5页 Information Technology
关键词 波特间隔均衡 直接序列扩频 大数据 通信 无线传感器网络 baud-spaced equalization direct sequence spread spectrum big data communication wireless sensor network
  • 相关文献

参考文献8

二级参考文献85

  • 1张杰.大型视觉多媒体网络的坏数据高效检测方法[J].微电子学与计算机,2015,32(5):143-146. 被引量:4
  • 2谭丽娟,陈运.模逆算法的分析、改进及测试[J].电子科技大学学报,2004,33(4):383-386. 被引量:10
  • 3张文芳,何大可,王小敏,郑宇.基于新型秘密共享方法的高效 RSA 门限签名方案[J].电子与信息学报,2005,27(11):1745-1749. 被引量:4
  • 4金晨辉,郑浩然,张少武,等.密码学[M].北京:高等教育出版社,2009.
  • 5Zhu ZhiBo,Song ZhiHuan. Fault Diagnosis Based on Imbal-ance Modified Kernel Fisher Discriminant Analysis [ J ].Chemical Engineering Research and Design, 2010, 88 (8):936-951.
  • 6Tavallaee M,Stakhanova N,Ghorbani A A. Toward CredibleEvaluation of Anomaly-Based Intrusion-Detection Methods[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part C: Applications and Reviews, 2010 ,40(5): 516-524.
  • 7Mazurowski M A,Habas P A, Zurada J M, et al. TrainingNeural Network Classifiers for Medical Decision Making:The Effects of Imbalanced Datasets on Classification Per-formance[J]. Neural Networks,2008,21(2-3) :427-436.
  • 8Kubat M, Holte R C, Matwin S. Machine Learning for theDetection of Oil Spills in Satellite Radar Images[J]. MachineLearning, 1998, 30(2-3):195-215.
  • 9Weiss G M. Mining with Rarity: A Unifying Framework[J].Newsletter of the ACM Special Interest Group on KnowledgeDiscovery and Data Mining, 2004,6(1) :7-19.
  • 10Weiss G M, Foster P. Learning When Training Data Are Cost-ly: The Effect of Class Distribution on Tree Induction [J]. Jour-nal of Artificial Intelligence Research, 2003, 19(10) :315-354.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部