摘要
A pilot-scale multilevel contact oxidation reactors system, coupled with saran lock carriers,was applied for the treatment of poultry farm wastewater. The removal efficiencies of CODcr, ammonia, and the total nitrogen as well as the elimination performance of CODcr and total nitrogen along the three-level contact oxidation tanks under six designed operational models were investigated. Based on the performance of the nitrogen removal of the saran lock carriers and the distribution of anoxic–aerobic interspace under the suitable operation model, the mechanism of nitrogen removal of the system was also explored. The results revealed that the intermittent aeration under parallel model is the most suitable operation model, while the removal efficiencies of CODcr, ammonia, and the total nitrogen were 86.86%, 84.04%, and 80.96%, respectively. The effluent concentration of CODcr,ammonia, and the total nitrogen were 55.6 mg/L, 8.3 mg/L, and 12.0 mg/L, which satisfy both the discharge standard of pollutants for livestock and poultry breeding industry(GB18596–2001) and the first grade of the integrated wastewater discharge standard(GB 8978–1996). Moreover, the mechanism for the nitrogen removal should be attributed to the plenty of anoxic–aerobic interspaces of the biofilm and the three-dimensional spiral structure of the saran lock carriers, where the oxygen-deficient distribution was suitable for the happening of the simultaneous nitrification and denitrification process. Therefore, the multilevel contact oxidation tanks system is an effective pathway for the treatment of the poultry farm wastewater on the strength of a suitable operation model and novel carriers.
A pilot-scale multilevel contact oxidation reactors system, coupled with saran lock carriers,was applied for the treatment of poultry farm wastewater. The removal efficiencies of CODcr, ammonia, and the total nitrogen as well as the elimination performance of CODcr and total nitrogen along the three-level contact oxidation tanks under six designed operational models were investigated. Based on the performance of the nitrogen removal of the saran lock carriers and the distribution of anoxic–aerobic interspace under the suitable operation model, the mechanism of nitrogen removal of the system was also explored. The results revealed that the intermittent aeration under parallel model is the most suitable operation model, while the removal efficiencies of CODcr, ammonia, and the total nitrogen were 86.86%, 84.04%, and 80.96%, respectively. The effluent concentration of CODcr,ammonia, and the total nitrogen were 55.6 mg/L, 8.3 mg/L, and 12.0 mg/L, which satisfy both the discharge standard of pollutants for livestock and poultry breeding industry(GB18596–2001) and the first grade of the integrated wastewater discharge standard(GB 8978–1996). Moreover, the mechanism for the nitrogen removal should be attributed to the plenty of anoxic–aerobic interspaces of the biofilm and the three-dimensional spiral structure of the saran lock carriers, where the oxygen-deficient distribution was suitable for the happening of the simultaneous nitrification and denitrification process. Therefore, the multilevel contact oxidation tanks system is an effective pathway for the treatment of the poultry farm wastewater on the strength of a suitable operation model and novel carriers.
基金
supported of the Major Science and Technology Program for Water Pollution Control and Treatment(Nos.2017ZX07102004-002 and 2012ZX07201002-6)