摘要
本研究利用正定矩阵因子分解模型(PMF)-健康风险评价模型(HMHR)探究了扬州市细颗粒物(PM_(2.5))中重金属污染来源及不同污染源对重金属潜在健康风险值的贡献.结果表明,各重金属全年浓度均值为Pb(64. 4 ng·m^(-3))> Cr(25. 24ng·m^(-3))> As(6. 36 ng·m^(-3))> Ni(5. 36 ng·m^(-3))> Cd(3. 34 ng·m^(-3))> Co(1. 21 ng·m^(-3));各污染源对PM_(2.5)贡献分别为二次源(37. 7%)>燃煤源(19. 4%)>扬尘(17. 5%)>机动车(16. 9%)>建筑尘(5. 2%)>工业源(3. 4%). As主要源于燃煤、机动车和扬尘; Co主要源于工业源;燃煤源对Pb的浓度贡献较高;工业源对Ni、Cd含量的贡献最高.不同污染源的健康风险依次为扬尘源、燃煤源、机动车、工业源、建筑尘.扬尘源和燃煤源的潜在健康风险较其他污染源为高,与其源谱中重金属元素占比较大且对PM_(2.5)贡献浓度较高有关.
Recently,a new method combining positive matrix factorization( PMF) and heavy metal health risk( HMHR) assessment was proposed to apportion sources of heavy metals in ambient particulate matter and the associated heavy metal cancer health risk( HMCR),which has been applied to data collected in Yangzhou,China. The annual average concentrations of six measured heavy metals were Pb( 64. 4 ng·m-3),followed by Cr( 25. 24 ng·m-3),As( 6. 36 ng·m-3),Ni( 5. 36 ng·m-3),Cd( 3. 34 ng·m-3),and Co( 1. 21 ng·m-3). The results showed that the major sources of PM2.5 were secondary sources( 37. 7%),followed by coal combustion( 19. 4%),resuspended dust( 17. 5%),vehicle emissions( 16. 9%),construction dust( 5. 2%),and industrial emissions( 3. 4%). As was primarily emitted from coal combustion,vehicle emissions,and resuspended dust. Co originated from industry emissions. Pb was mainly emitted from coal combustion. Ni and Cd were from industrial emissions. The major sources that contributed to HMCR were resuspended dust,coal combustion,vehicle emissions,industry emissions,and construction dust. The high contributions of resuspended dust and coal to HMCR were likely due to the high heavy metals concentrations in coal and the resuspended dust profile as well as high emissions of these sources.
作者
董世豪
谢扬
皇甫延琦
史旭荣
易睿
史国良
冯银厂
DONG Shi-hao;XIE Yang;HUANGFU Yan-qi;SHI Xu-rong;YI Rui;SHI Guo-liang;FENG Yin-chang(State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control,College of Environmental Science and Engineering,Nankai University,Tianjin 300071,China;Yangzhou Environmental Monitoring Center,Yangzhou 225009,China)
出处
《环境科学》
EI
CAS
CSCD
北大核心
2019年第2期540-547,共8页
Environmental Science
基金
国家重点研发计划项目(2016YFC0208505)
国家自然科学基金项目(41775149)