期刊文献+

2014~2017北京市气象条件和人为排放变化对空气质量改善的贡献评估 被引量:32

Contribution Assessment of Meteorology Conditions and Emission Change for Air Quality Improvement in Beijing During 2014-2017
原文传递
导出
摘要 2014~2017年北京地区霾日数和污染日数逐年减少,PM_(2.5)、PM_(10)、SO_2和NO_2年平均质量浓度下降,污染程度缓解,采暖期中的11~12月尤为明显.针对空气质量的显著改善,从气象条件的改善和减排措施两方面进行探讨分析,并结合数值模式和大数据挖掘技术实现气象和排放对大气污染贡献率的定量化研究.结果表明,2017年与过去3 a相比,平均风速增加7. 9%,≥3. 4 m·s^(-1)的风速频次最高(10. 6%),≥70%湿度日占比最小(25. 1%);其中,采暖期与过去3 a同期相比,小风日数减少8. 6%、大气环境容量指数和通风指数平均增加约11%,边界层高度以3. 2%·a^(-1)的速率升高,尤其11~12月各要素改善更显著,且该时段内2014年各因子变化与2017年相似.非采暖期(4~10月)累积降水量558. 3 mm,仅次于2016年,有利于污染物的清除和湿沉降.利用WRF-CHEM对霾和污染频发的12月进行模拟发现,气象要素的改变导致2017年12月北京PM_(2.5)质量浓度较2014~2016年同期分别降低5%、38%和25%.因缺少政府实际施行的减排方案,无法利用WRF-CHEM量化气象和减排的具体贡献率,因此借助大数据挖掘算法,基于K近邻算法(KNN)和支持向量机(SVM)模型对气象和减排对空气质量改善的贡献进行评估,结果显示2017年减少的霾日和重污染日,65. 0%归因于减排的贡献,35. 0%归因为气象条件的改善.可见,气象与生态环境部门应继续加强数据开放共享,科学开展气象条件预报与减排评估. During 2014-2017,the number of haze days and air pollution days declined year by year obviously in Beijing.The average mass concentrations of PM2.5,PM10,SO2,and NO2 also decreased with the alleviated pollution level.These decreases were more obvious during the heating period,especially in November and December.In order to analyze the reasons for the improvement of air quality,changes of the meteorological factors and emission-reduction have been discussed and quantified in this study.This work was based on the numerical simulation model WRF-CHEM and the large data mining technologies of k-nearest neighbor(KNN)and support vector machines(SVM).Meteorological observations indicated that the mean wind speed of 2017 increased by 7.9%compared with the last three years.The frequency of hourly wind speed higher than 3.4 m·s-1 was the highest(10.6%),and frequency of daily relative humidity higher than 70%was lowest(25.1%),in 2017.Meanwhile,the number of low wind days(daily wind speed lower than 2 m·s-1),environmental capacity,ventilation index,and height of the boundary layer showed that the diffusion conditions were better in the heating period of 2017 than those of 2014~2016,especially in November and December.The accumulated precipitation during the non-heating period was 558.3 mm in 2017,which is conducive to pollutant removal and wet deposition.Inter-annual changes of meteorological conditions are important to the air quality.A simulation for December 1~19 by WRF-CHEM during 2014-2017 was performed,and the results demonstrated that changes of meteorological conditions led to a reduction of the PM2.5 concentration of 2017 by 5%,38%,and 25%compared with that of 2014-2016,respectively.However,it was not possible to quantify the specific contributions of meteorology conditions because of the lack of real emission reduction options.The KNN and SVM models are applied in this study based on the observed meteorology factors,haze days,and pollution days,and it was found that for the reduced haze days and heavy pollution days in 2017,65.0%could be attributed to emission reduction and 35.0%was caused by improvement of the meteorological conditions.
作者 尹晓梅 李梓铭 熊亚军 乔林 邱雨露 孙兆彬 寇星霞 YIN Xiao-mei;LI Zi-ming;XIONG Ya-jun;QIAO Lin;QIU Yu-lu;SUN Zhao-bin;KOU Xing-xia(Institute of Urban Meteorology,Chinese Meteorological Administration,Beijing 100089,China;Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei,Beijing 100089,China;Key Laboratory of Atmospheric Chemistry,China Meteorological Administration,Beijing 100081,China)
出处 《环境科学》 EI CAS CSCD 北大核心 2019年第3期1011-1023,共13页 Environmental Science
基金 北京市气象局科技项目(BMBKJ201702008) 中国气象局预报员专项(CMAYBY2018-003) 中国气象局大气化学重点开放实验室开放课题项目(2017b04) 国家重点研发计划项目(2016YFC0202100)
关键词 空气污染 气象条件 排放 K近邻算法(KNN) 支持向量机(SVM) 贡献率 air pollution meteorological conditions emission K-nearest neighbor(KNN) support vector machines(SVM) contribution
  • 相关文献

参考文献23

二级参考文献379

共引文献1722

同被引文献495

引证文献32

二级引证文献284

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部