期刊文献+

超临界流体快速膨胀法制备超细微粒 被引量:5

Preparation of Microparticles with the Rapid Expansion of Supercritical Solutions
下载PDF
导出
摘要 超临界流体快速膨胀法 (RESS)是一项近 10年发展起来的制备超细微粒的新技术。它将溶解有饱和溶质的超临界流体在非常短的时间内 (10 -8~ 10 -5s)通过一个喷嘴 (2 5~ 6 0μm)进行减压膨胀 ,利用强烈的机械扰动以达到极高的过饱和度 (约 10 6)和均相成核条件 ,从而产生纳米至微米级粒径且粒径及形态分布均匀的超细微粒。该方法已经在制备药物微粒、聚合物微粒和纤维、有机材料和无机材料与陶瓷先驱物等方面得到广泛的应用研究 ,不仅可以制备单组分的形态不同的微粒或纤维 ,还可以制备双组分的包覆型微粒。但理论研究目前还处于探索阶段 ,不能准确解释装置结构参数和操作条件对最终产物形态的影响。在此主要就超临界流体的性质 ,RESS方法的基本原理、理论和应用研究成果进行简单介绍。 The rapid expansion of supercritical solutions (RESS) is a novel technique preparing microparticles, which has developed recently 10 years. It causes the supercritical solutions saturated with solute depressurizedly to expand through a capillary nozzle (25~60 um) within an extremely short time (10 -8 ~10 -5 s). Because of the very high supersaturation (about 10 6) and homogeneous nucleation condition engendered by the mechanical perturbations, the RESS process produces microparticles which range from nanometer to micron and have narrow particle size and morphology distribution. This technique has been fully used to prepare the pharmaceutical microparticles, polymeric microparticles and fibers, organic materials, inorganic materials and microparticles of the ceramic precursor. It not only produces microparticles and fibers of the single solute, but also produces the microcapsules of two solutes. But an understanding of the underlying theory is still at an early stage, thus the relations between the morphology of the products and the operational and structural parameters cannot be explained accurately. A brief review of the supercritical fluid properties, fundamental principle and theoretical investigations and application researches for the RESS process was given in more detail in this paper.
出处 《化学反应工程与工艺》 CAS CSCD 北大核心 2002年第4期344-352,共9页 Chemical Reaction Engineering and Technology
关键词 超临界流体 快速膨胀法 制备 超细微粒 RESS Supercritical solutions microparticles Rapid expansion RESS
  • 相关文献

参考文献36

  • 1Hannay J B, Hogarth J. On the Solubility of Solids in Gases[J]. Proc Roy Soc, 1879, 29(3): 324~331.
  • 2Krukonis V J. Supercritical Fluid Nucleation of Difficult-to-Comminute Solids[J]. AIChE J Meeting, San Francisco, 1984: 140f.
  • 3Matson D W, Fulton J L, Petersen R C, et al. Rapid Expansion of Supercritical Fluid Solutions: Solute Formation of Powders, Thin Films, and Fibers[J]. Ind Eng Chem Res, 1987, 26: 2298.
  • 4Matson D W, Petersen R C, Smith R D. Production of Powders and Films by the Rapid Expansion of Supercritical Solutions[J]. Journal of Materials Science, 1987, 22: 1919~1928.
  • 5Debenedetti P G. Homogeneous Nucleation in Supercritical Fluids[J]. AIChE J,1990, 36(9): 1289~1298.
  • 6Türk M. Influence of Thermodynamic Behaviour and Solute Properties on Homogeneous Nucleation in Supercritical Solutions[J]. Journal of Supercritical Fluids, 2000, 18: 169~184.
  • 7Peng D Y, Robinson D B. A New Two-constant Equation of State[J]. Ind Eng Chem Fundam, 1976, 15(1): 59.
  • 8Platzer B, Maurer G. A Generalized Equation of State for Pure Polar and Nonpolar fluids[J], Fluid Phase Equilib, 1989, 10: 223~236.
  • 9Türk M. Formation of Small Organic Particles by RESS: Experimental and Theoretical Investigations[J]. Journal of Supercritical Fluids, 1999, 15: 79~89.
  • 10Tom J W, Debenedetti P G. Formation of Bioerodible Polymeric Microspheres and Microparticles by Rapid Expansion of Supercritical Solutions[J]. Biotechnol Prog, 1991, 7: 403-411.

二级参考文献3

共引文献38

同被引文献84

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部