摘要
从基准变换角度,给出了一种基于定性基准变换的模糊隶属度表示法:在性质拓扑空间中进行的基准变换Tij,令区间域簇R={(eik,eik+1],k=0,1,…,n}为(0,1]上的一个划分,设性质Pi(x)的基准域簇为τi={Nik},映射Hλ:τi→R为基准变换的扰动系数映射,在扰动系数映射下可以构成集合套H:(0,1]→Nim,从而可以确定一个模糊集:A=∪λ∈(0,1]λTijH-1λ(λ),最后的隶属度的确定的数学表达为:μ(Pa(x))=sup{λ|Pa(x)→Tij H-1λ(λ),λ∈(0,1]}.
From the aspect of the criterion transition theory,this paper gives a representation of fuzzy membership based on qualitative criterion transition:a criterion Tij in property topological space,assuming that R={(eik,eik+1],k=0,1,...,n} is a division of (0,1),τi={Nik} is a criterion of property Pi(x) map Hλ:τi→R is the disturbed coefficient map of criterion transition,the pap→Nim,and then it can ascertaiλTij H-1λ(λ).Finally,the mathematical expression of ascertaining the grade of membership is μ(Pa(}.
出处
《广西师范大学学报(自然科学版)》
CAS
2002年第4期23-26,共4页
Journal of Guangxi Normal University:Natural Science Edition
基金
国家"863"基金资助项目(863-306-ZT06-03-3)
国家自然科学基金资助项目(60075016)