摘要
为了快速生成具有自相似特性的模拟网络流量,应用小波变换将实际测量到的网络流量分解成不同尺度下的小波系数(细节信号)和尺度系数(背景信号),并把这些系数分割成长度相等的很多个小段.然后从每个尺度下的细节信号中和背景信号中分别随机抽取一个小段进行叠加,多次重复该操作,就可以得到较长时间范围内的模拟网络流量.采用方差时间曲线图对模拟生成的网络流量的自相似特性进行了分析,结果表明:用该方法模拟的网络流量具有较好的自相似性,而且简单、速度快.
In order to rapidly generate the simulated network traffic with self-similarity, the traffic collected from a real network is decomposed into wavelet coefficients (detailed signals) and scale coefficients (background signals) with different scales based on the wavelet analysis, and these coefficients are divided into many parts with the same length. The parts randomly selected from each group of coefficients respectively are then added up. The stochastic network traffic is obtained by repeating this operation. The statistic analysis shows that the network traffic generated by this way possesses a high degree of self-similarity, and the high velocity and simplicity of this method are confirmed.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2003年第2期188-191,共4页
Journal of Xi'an Jiaotong University
基金
国家“八六三”计划资助项目(2001AA1121l1)