期刊文献+

采用重复剪辑近邻法提高决策树算法的性能 被引量:4

Improving performance of decision trees with multi-edit-nearest-neighbor algorithm
下载PDF
导出
摘要 决策树算法易受训练样本集中噪声和混杂区域的影响。重复剪辑近邻法能消除样本集中符合某些先决条件的噪声 ,清除混杂区域中后验概率较小的类别所包含的样本 ,并在各类样本间形成符合Bayes分类准则的界线。用它对合适的训练样本集进行筛选 ,可在不损害分类准确率的同时明显地减小决策树的规模 ,有助于增强决策树的可理解性和可用性 ,从而提高决策树的性能。 Noises and overlapped regions existing in training samples hurt the simplicity and generality of decision trees. To solve this problem, a sample selection algorithm based on multi-edit-nearest-neighbor rule is proposed. This algorithm, under ideal conditions, can eliminate the noise satisfying some prerequisites, purify the overlapped region according to its members′ posterior probabilities, and finally form a Bayesian boundary between samples of different classes. When applied to an appropriate trainingdataset,itobviouslycutsdownthesize of resulting decision trees without sacrificing the accuracy. This improves both the understandability and generality of decision trees.
出处 《控制与决策》 EI CSCD 北大核心 2003年第1期96-98,102,共4页 Control and Decision
基金 国家 8 6 3高技术计划基金资助项目 (86 3- 5 11- 945 - 0 0 5 86 3- 30 6 -ZD13- 0 5 - 6 )
关键词 重复剪辑近邻法 决策树算法 性能 数据挖掘 样本筛选 模式识别 Data mining Decision tree Multi-edit-nearest-neighbor algorithm Sample selection
  • 相关文献

参考文献1

  • 1边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..

共引文献5

同被引文献28

  • 1颜辉.K-近邻法在入侵检测中的应用[J].吉林工程技术师范学院学报,2003,19(12):19-22. 被引量:2
  • 2ZHANGGexiang,JINWeidong,HULaizhao.Resemblance Coefficient Based Intrapulse Feature Extraction Approach for Radar Emitter Signals[J].Chinese Journal of Electronics,2005,14(2):337-341. 被引量:43
  • 3张葛祥,金炜东,胡来招.基于相像系数的雷达辐射源信号特征选择[J].信号处理,2005,21(6):663-667. 被引量:23
  • 4张葛祥,荣海娜,金炜东.基于小波包变换和特征选择的雷达辐射源信号识别[J].电路与系统学报,2006,11(6):45-49. 被引量:35
  • 5Asa B H,David H,Hava T S,et al.Support vector clustering[J].Journal of Machine Learning Research,2001,2(12),125-137.
  • 6Zhang Gexiang,Rong Haina,Jin Weidong.Intra-pulse modulation recognition of unknown radar emitter signals using support vector clustering[C] //Lecture Notes in Artificial Intelligence,Berlin:Springer,2006,4223:420-429.
  • 7Tap B,Shigeo A.Spatially chunking supp-ort vector clustering algorithm[C] //Proc.of International Joint Conference on Neural Networks,Washington:IEEE Press,2004:413-418.
  • 8Jen Chiehchiang,Jeen Shingwang.A vali-dity-guided support vector clustering algori-thm for identification of optimal cluster configuration[C] //Proc.of IEEE International Conference on Systems,Man and Cybernetics,Washington:IEEE Press,2004,4:3613-3618.
  • 9Vijaya V S,Harish K,Pabitra M.A decomposition method for support vector clustering[C] // Proc.of the 2nd International Conference on Intelligent Sensing and Information Processing,Washington:IEEE Press,2005:268-271.
  • 10Andrew Webb. Statistical Pattern Recognition[M]. New York :Oxford University Press Inc, 1999.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部