期刊文献+

周期生态系统的渐近性态 被引量:2

SOME ASYMPTOTICAL BEHAVIOURS FOR PERIODIC ECOSYSTEMS
原文传递
导出
摘要 解关于初值的混合单调性是生态系统本身具有的特性,本文通过对一般周期生态系统所定义的混合单调算子的不动点性态的研究,得到正周期解的存在唯一性及其吸引性的一般性结论.该结论包含了许多已知的结果. In this paper, general periodic ecosystems are discussed. Through studying of the fixed point behaviours to the mixed monotone operator, we obtain some results about the existence and uniqueness, and attraction of the positive periodic solution for general periodic ecosystems. Our results unify and improve some known results.
出处 《应用数学学报》 CSCD 北大核心 2002年第4期713-722,共10页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(60274007号) 高校博士点专项基金(20010487005号)资助项目
关键词 混合单调算子 生态系统 周期解 渐近性 常微分系统 Mixed monotone operator, ecosystem, periodic solution, asymptotic behaviours
  • 相关文献

参考文献15

  • 1Hirch M W. Systems of Differential Equations which are Competive or Cooperative, I: Limit Sets. SIAM. J. Math. Anal., 1982, 13:167-179
  • 2Hirch M W. Stability and Convergence in Strogly Monotone Dynamical Systems. Reine. Angew. Math., 1988, 383:1-53
  • 3Hirch M W. The Dynamical Systems Approach to Differential Equations. Bull. Amer. Math. Soc., 1984, 11: 1-64.
  • 4陈伯山.混合单调半流与泛函微分方程的稳定性[J].数学学报(中文版),1995,38(2):267-273. 被引量:4
  • 5陈伯山.一类非线性周期时滞系统的周期解[J].应用数学学报,1994,17(4):541-550. 被引量:5
  • 6Walter W. Differential and Integral Inequalities. Berlin, Heidelberg, New York: Springer-Verlag, 1970
  • 7Smith M L. Cooperative Systems of Differential Equations with Concave Nonlinearities. Nol. Anal., 1986, 10:1037-1052
  • 8Smith M L. Periodic Competive Differential Equations and Discrete Dynamics of Competive Maps. J. Diff. Equs., 1986, 64:165-193
  • 9Gopalsamy K. Globle Asymptotic Stability in a Periodic Lotka-Volterra System. J. Austral. Math. Soc. (Series B), 1985, 27:66-72
  • 10Tineo, Alvarez C. A Different Consideration about the Species Problems. J. Math. Anl. Appl., 1991, 159:44-50

共引文献11

同被引文献23

  • 1杨逢建,张超龙.具有可变时滞的高阶非自治中立型差分方程的振动性[J].生物数学学报,2006,21(4):564-570. 被引量:1
  • 2Abdurahman X.Teng Zhidong.On the persistence of a nonautonomous n-species Lotka-Volterra cooperative system[J].Appl.Math.Comput.,2004,152(3):885-895.
  • 3Ahmad S,Lazer A C.Average growth and extinction in a competitive Lotka-Volterra system[J].Nonlinear Anal.,2005,62 (3):545-557.
  • 4Zhao Jiandong,Jiang Jifa.Average conditions for permanence and extinction in nonautonomous Lotka-Volterra system[J].J.Math.Anal.Appl.,2004,299(2):663-675.
  • 5Ahmad S,Lazer A C.Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system[J].Nonlinear Anal.,2000,40 (1-8):37-49.
  • 6Zhao Jiandong,Jiang Jifa,Alan C.Lazer.The permanence and global attractivity in a nonautonomous LotkaVolterra system[J].Nonlinear Anal.,2004,5(2):265-276.
  • 7陈兰荪.数学生态模型与研究方法[M].北京:科学出版社,1996.
  • 8马知恩.种群生态学的建摸与研究[M].合肥:安徽教育出版社,1996.
  • 9Fan Meng, Wang Ke. Existence and global attractivity of positive periodicsolutions of periodic n - species Lotka - Volterra competition systems with several deviating arguments[ J]. Math Biosci, 1999,160:47 - 61.
  • 10LiBiwen.The existence of positive periodic solution for two-patches presator-prey diffusion delay models with functional response.生物数学学报,2002,17(4):63-66.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部