期刊文献+

渐近拟非扩张映射的Ishikawa迭代序列(英文) 被引量:1

Ishikawa Iterative Sequences for Asymptotically Quasi-nonexpansive Mappings
下载PDF
导出
摘要 设E为Banach空间,T是E到E上的渐近拟非扩张映射,T的不动点集合F(T)非空.对任意的x0∈E,如Ishikawa迭代序列定义xn+1=(1-tn)xn+tnTnyn,yn=(1-sn)+snTnxn, tn,sn∈[0,1], n=1,2,3…在不要求T具有连续的条件下,给出并证明了序列{xn}收敛到T的不动点的充分必要条件,我们的定理改进了近期的相应结果. Let E be a Banach space, T:E→E an asymptotically quasinonexpansive mapping of E.F(T) denotes the set of fixed points of T and F(T) is nonempty. For any given x0∈E, the Ishikawa sequence {xn} is defined byxn+1=(1-tn)xn+tnTnyn,yn=(1-sn)+snTnxn,tn,sn∈,n=1,2,3....In this paper, a sufficient and necessary condition for an Ishikawa iterative sequence of asymptotically quasinonexpansive mapping T to converge to a fixed point where T need not be continuous. The recently corresponding results are improved by our theorems.
作者 黄家琳
机构地区 宜宾学院数学系
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2003年第1期10-12,共3页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅重点科研基金资助项目
关键词 BANACH空间 渐近似非扩张映射 ISHIKAWA迭代序列 不动点 收敛性 Banach space Asymptotically quasi-nonexpansive mapping Ishikawa iterative sequence
  • 相关文献

参考文献6

  • 1Passty G B. Construction of fixedpoints for asymptotically nonexpansive mapping[J]. Proc Amer Math Soc,1982,84:212~216.
  • 2Schu J. Iterative construction of fixed points of asymptotically nonexpansivemappings[J]. J Math Anal Appl,1991,158:407~413.
  • 3Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansivemappings[J]. Proc Amer Math Soc,1972,35:171~174.
  • 4Ghosh M K, Debnath L. Convergence of Ishikawa iterates of quasi-nonexpansivemappings[J]. J Math Anal Appl,1997,207:96~103.
  • 5Petryshyn W V, Williamson T E. Strong and weak convergence of the sequence ofsuccessive approximation for quasi-nonexpansive mappings[J]. J Math Anal Appl,1973,43:459~497.
  • 6Li Q H. Iterative sequences for asymptotically quasi-nonexpansive mappings[J]. JMath Anal Appl,2001,259:1~7.

同被引文献18

  • 1叶明露,邓方平.一般变分不等式的超梯度算法[J].四川师范大学学报(自然科学版),2005,28(3):265-269. 被引量:4
  • 2Bertsekas D P, Tsitsiklis J. Parallel and Distributed Computation Numerical Methods[ M]. New Jersey: Prentice Hall, 1989.
  • 3Han D, Lo H K. Two new self-adaptive projection methods for variational inequality problems[J]. Computer and Mathematics with Applications,2002,43:1529 ~ 1537.
  • 4He B S, Liao L Z. Improvement of some projection methods for monotone nonlinear variational inequalities[ J ]. Journal of Optimization Theory and Applications, 2002,112:111 ~ 128.
  • 5Noor M A. Some recent advances in variational inequalities, part 1: basic concepts[ J]. New Zealand Journal of Mathematics, 1997,26:53~80.
  • 6Noor M A. Some recent advances in variational inequalities, part2: other concepts[ J]. New Zealand Journal of Mathematics, 1997,26:229~ 255.
  • 7Iusem A N, Svaiter B F. A various of Korpelevich's method for variational inequalities with a new search strategy[ J]. Optimization, 1997,42:309~ 321.
  • 8Noor M A. Some algorithm for general monotone mixed variational inequalities[ J]. Mathematics with Computer Modeling, 1999,29:1 ~ 9.
  • 9Noor M A. A modified extragradient method for general monotone variational inequalities[ J]. Computers and Mathematics with Applications, 1999,38:19 ~ 24.
  • 10He B S. A class of projection and contraction methods for monotone variational inequalities[ J]. Application Math Optimization, 1997,35:69 ~ 76.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部