期刊文献+

多元线性回归的一种神经计算实现及其优点 被引量:1

A Neural Approach for Multiple Linear Regression and Its Advantages
下载PDF
导出
摘要 给出了用模糊感知器学习算法和(ε,δ)准则估计多元线性回归模型回归系数的详细算法,讨论了学习速率、ε和δ的设定;并与经典的回归系数估计方法最小二乘法作比较,发现总体拟合最好的特性对于含异常数据(noisydata)的情况反而会使预测值背离事实更远,而基于模糊感知器的学习算法实现线性回归具有编程简单、对数据无特殊要求而且对数据的容错性较高的优点,可用来实现数据挖掘所需要的预测和异常检测功能。 In this paper a detailed algorithm for multiple linear regression coefficients evaluation is provided, which employs a training algorithm for fuzzy perceptron based on a socalled (ε,δ)criteria . After the setting of the learning rate λ and the fuzzy degree (ε,δ) are addressed, the neural method named FPMLR is compared to the classical least squares method for regression coefficients evaluation. As a result, we conclude that the neural method is superior to the least squares method in robustness aspect due to its feature of fuzziness, which may contribute to omitting noisy data. Finally, we suggest that the neural method be applied to the implementation of prediction and abnormal detection required by data mining.
作者 成卫青
出处 《南京邮电学院学报(自然科学版)》 2002年第4期33-38,共6页 Journal of Nanjing University of Posts and Telecommunications
关键词 多元线性回归 模糊感知器 δ)准则 学习速率 异常数据 神经计算法 数据库 数据挖掘 Multiple linear regression Fuzzy perceptron (ε,δ)-Criteria Learning rate Noisy data
  • 相关文献

参考文献9

  • 1HAN Jiawei, KAMBER M. Data Mining[M]. New York:Morgan Kaufmann Publishers. 2001. 279~282,319~322.
  • 2EVANGELISTA M A, NEVES Jr F, ARRUDA L V R, et al. Developnent of inferential distillation models using multivariate statistical methods [A]. In: Proceedings of the IEEE Conference on Decision and Control v 4[C]. 2001. 3722 ~ 3727.
  • 3LOGESWARAN R, ESWARAN C. Radial basis neural network for lossless data compression [J]. International Journal of Computers and Applications, 2002,24 (1) :14 ~ 19.
  • 4LOUKAS Y L. Radial basis function networks in liquid chromatography: Improved structure-retention relationships compared to principal components regression (PCR) and nonlinear partial least squares regression (PLS) [J]. Journal of Liquid Chromatography and Related Technologies, 2001,24(15) :2239 ~ 2256.
  • 5QIAN Hancheng, XIA Bocai, LI Shangzheng. Fuzzy neural network modeling of material properties[J]. Journal of Materials Processing Technology, 2002,122 ( 2 ~ 3 ): 196 ~ 200.
  • 6YANG H, RING Z, BRIKER Y. Neural network prediction of cetane number and density of diesel fuel from its chemical composition determined by LC and GC-MS[J]. Fuel, 2002, 81 (1) :65 ~74.
  • 7Satoh Shingo, Shaikh Muhammad Shafique, Dote Yasuhiko. Fault diagnosis for dynamical systems using soft computing[A]. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics v 3[C]. 2001. 1448 ~ 1452.
  • 8KAO Chiang, LU Chyuchin. A fuzzy linear regression model with better explanatory power[J]. Fuzzy Sets and Systems, 2002,126(3) :401 ~409.
  • 9FANG J H, CHEN H C. Fuzzy modelling and the prediction of porosity and permeability from the compositional and textural attributes of sandstone [J]. Journal of Petroleum Geology, 1997,20(2) :185 ~204.

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部