期刊文献+

基于计算机视觉的车道标线与障碍物自动检测 被引量:3

Computer Vision-based Automatic Lane and Obstacle Detection
下载PDF
导出
摘要 车道标线与障碍物检测是智能车辆辅助驾驶系统的关键技术问题。论文提出了一种基于计算机视觉的车道和障碍物检测新方法。它根据摄影几何投影变换从图像内容重建出道路平面图,解决了图像中远方车道过于细小、难以检测的缺点,算法对虚线车道特别有效。文中对重建参数选择进行了分析比较,实验表明重建结果对参数变化具有很好的鲁棒性。 Automatic lane and obstacle detection is one key technique for intelligent vehicle driving.The authors present a novel computer vision-based approach for automatic lane and obstacle detection,which reconstructs the road image that lightens the influence of the small lane segments in the far.This method is very effective,especially for dashed lanes.They also analyze the selection of reconstruction parameters,and prove reconstruction results robust to the parame-ters.
作者 邢延超 谈正
出处 《计算机工程与应用》 CSCD 北大核心 2003年第6期223-225,共3页 Computer Engineering and Applications
关键词 计算机视觉 车道标线 障碍物 自动检测 智能车辆系统 几何投影变换 交通事故 汽车驾驶 安全技术 Intelligent vehicle system,Lane detection,Obstacle detection,Geometric projection
  • 相关文献

参考文献2

二级参考文献5

  • 1[1]TURK MATTHEW A,MORGENTHALER DAVID G,GREMBAN KEITH D ,MARRA MARTIN,VITS-A Vision System for Autonomous Land Vehicle Navigation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.,1988,10(3):324-361.
  • 2[2]KUAN DARWIN,PHIPPS GAGY,CHUAN HSUEH A,Autonomous Robotic Vehicle Road Following[J],IEEE Transactions on Pattern Analysis and Machine Intelligence.,1988,10(5): 648-658.
  • 3[3]MALLAT STEPHANE,ZHONG SIFEN,Characterization of Signals from Multiscale Edges[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.,1992,14(7):710-732
  • 4[4]OH SE-YOUNG,LEE HEONG-HOON,CHOI DOO-HYUN.A New Reinforcement Learning Vehicle Control Architecture for Vision-based Road Following[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.,2000,49(3):997-1005
  • 5[5]BEHRINGER REINHOLD,MULLER NIKOLAUS,Autonomous Road Vehicle Guidance from Autobahnen to Narrow Curves[J].IEEE Transactions on Robotics and Automation.,1998,14(5):810-815

共引文献596

同被引文献19

  • 1刘燕,刘浩学.基于计算机视觉的单目摄影纵向车距测量系统研究[J].公路交通科技,2004,21(9):103-106. 被引量:14
  • 2周欣,黄席樾.高速公路多车道分道线快速检测与重建技术[J].中国公路学报,2005,18(2):107-111. 被引量:9
  • 3范培蕾,张晓今,廖传锦,寇保华.基于视觉的高速公路目标检测与跟踪系统研究[J].重庆邮电学院学报(自然科学版),2005,17(6):776-779. 被引量:2
  • 4LeBlanc D J,et al. CAPC:A Road-Departure Prevention System. IEEE Control Systems Magazine, 1996,16 (6) :61 - 71.
  • 5Chen M ,Jochem T, Pomerleau D. AURORA: A Vision-Based Roadway Departure Warning Systems. tech. report CMU-RI-TR-97-21, Robotics Institute ,Carnegie Mellon University, May, 1997.
  • 6Joon Woong Lee. A Machine Vision System for Lane-Departure Detection. Computer Vision and Image Understanding,2002 (86) :52 -78.
  • 7Wang Yue,Shen Dinggang,Eam Khwang Teoh. Lane Detection and Tracking Using B-Snake, Image Vision Comput. 2004,22(4).
  • 8MeCall Joel C, Trivedi Mohan M. An Integrated, Robust Approach to Lane Marking Detection and Lane Tracking, Proc, IEEE Intelligent Vehicle Symposium ,June 2004.
  • 9Axel Gem, Rainer Moebus, Uwe Franke. Vislon-based Lane Recognition Under Adverse Weather Conditions Using Optical Flow. Prec.of IEEE Intelligent Vehicle Symposium. 2002.
  • 10Chen Mei, Jochem Todd, Pomerleau Dean. AURORA: A Vision-Based Roadway Departure Warning System. IEEE Conference on Intelligent Robots and Systems, Human Robot Interaction and Cooperative Robots, Vol. 1, August, 1995.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部