期刊文献+

A New Successive Approximation Damped Newton Method for Nonlinear Complementarity Problems 被引量:1

求解非线性互补问题的逐次逼近阻尼牛顿法(英文)
下载PDF
导出
摘要 In this paper, we present a new successive approximation damped Newton method for the nonlinear complementarity problem based on its equivalent nonsmooth equations. Under suitable conditions, we obtain the global convergence result of the proposed algorithms. Some numerical results are also reported. 针对非线性互补问题,提出了与其等价的非光滑方程的逐次逼近阻尼牛顿法,并 在一定条件下证明了该算法的全局收敛性.数值结果表明,这一算法是有效的.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第1期1-6,共6页 数学研究与评论(英文版)
关键词 nonlinear complementarity problems successive approximation damped Newton method global convergence. 非线性互补问题 逐次逼近阻尼牛顿法 非光滑方程 全局收敛性
  • 相关文献

参考文献8

  • 1JOSEPHY N H. Quasi-Newton methodsfor generalized equation [R]. Technique Summary Report, No. 1977, Math. Res. Center,Madison, WI 1979.
  • 2PANG J S, QI L. Nonsmooth equations: motivation and applications [J]. SIAM J.Opti., 1993,3:443 465.
  • 3QI L, CHEN X. A global converging successive approximation method for nonsmoothequations [J]. SIAM J. Control & Opti., 1995, 2:402 418.
  • 4ZHOU S Z, LID H, ZENG J P. A Successive Approximation Quasi-Newton Process forNonlinear Complementarity Problem [M]. Recent Advances in Non-smooth Optimization,WorldScientific Publishing Co Pte Ltd. 1995. 459 472.
  • 5PANG J S. Newton's method for B-differentiable equations [J]. Math. Oper. Res.,1998, 15:311-341.
  • 6PANG J S, CHAN D. Iterative methods for variational and complementarity problems[J].Math. Prog., 1982, 24: 284-313.
  • 7ZHOU S Z, YAN Q R. Kantoriovich theorem for nonlinear complementarity problems[J].Chinese Sci. Bull., 1991, 36
  • 8GRIEWANK A. The global convergence of Broyden-like methods with a suitable linesearch[J]. Journal of Australian Math. Society, Ser. B, 1986, 28: 75-92.

同被引文献9

  • 1Outrate J V, Kocvare M, Zowe J. Nonsmooth Approach to Optimization Problems With Equilibrium Consrtaints[ M]. The Netherlands: Kluwer Academic Publishem, 1998.
  • 2Jiang H, Ralph D. Smooth SQP method for mathematical programs with nonlinear complementarity constraints[ J ]. SIAM J Optimization, 2000,10(3) : 779-808.
  • 3Fukushima M, Luo Z Q, Pang J S. A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints[ J]. Comp Opti Appl, 1998, 10 (1) :5-34.
  • 4Fukushima M, Pang J S. Some feasibility issues in mathematical programs with equilibrium constraints[J]. SIAMJ Optimization, 1998,8(3) : 673-581.
  • 5Panier E R, Tits A L. On combining feasibility, descent and superlinear convergence in inequality constrained optimization[ J]. Mathematical Programming, 1993,59(1) : 261-276.
  • 6Zhu Z B, Zhang K C. A superlineariy convergent SQP algorithm for mathematical programs with linear complementarity constraints[ J]. Applied Mathematics and Computation ,2005,172(1) : 222-244.
  • 7Panier E R, Tits A L. A stoerlinearly convergent feasible method for the solution of inequality constrained optimization problems[J]. SIAM J Control Optim, 1987,25(3) : 934-950.
  • 8Facchinei F, Dacidi S. Quadraticly and superlinearly convergent for the solution of inequality constrained op optimization problem[ J]. J Optim Theory Appl, 1995,85(2 ): 265-289.
  • 9朱志斌,罗志军,曾吉文.互补约束均衡问题一个新的磨光技术[J].应用数学和力学,2007,28(10):1253-1260. 被引量:4

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部