期刊文献+

采用新型假设剪切应变插值函数的Timoshenko梁单元 被引量:1

The timoshenko beam element with new assumed shear strains shape function
下载PDF
导出
摘要 挠度与转角独立插值的Timoshenko梁在板架及高腹板梁的计算中具有很大优势,但传统的采用Lagrange插值的Timoshenko梁单元计算误差较大,且在细长梁情况下易发生剪切锁死。本文从Timoshenko梁理论出发,采用假设剪切应变法,将假设剪切应变的插值函数分别用三角函数、二次多项式及指数函数表示,得到3种两节点四自由度梁单元。这些单元不会发生剪切锁死,且在无论是细长梁还是高腹板梁的计算中均具有不错的精度,特别是在高腹板梁情况下计算结果尤其准确。同时该新型单元表达格式简单,计算效率较高,易于运用。 The Timoshenko beam use independent deflection and rotation interpolating shape function,and it is very effective in the calculation of grillage structure and high web beam. However,the traditional Timoshenko beam element which used Lagrange interpolating function is not accurate enough,and shear locked phenomena will happen in the slender beam calculation. This article base on the Timoshenko beam theory and assumed shear strains theory,using the trigonometric function,quadratic polynomial and exponential function as the assumed shear strains interpolating function. Three 2- nodes 4-freedoms beam elements are deduced. These elements can avoid the shear locked phenomena. Calculation results show that these elements are accuracy in both slender beam and high web beam calculation,and the result is especially precise in the high web beam calculation. These elements have relatively simple formulation,better computational efficiency and easy to use.
作者 曾达峰 林哲
出处 《舰船科学技术》 北大核心 2015年第S1期35-40,共6页 Ship Science and Technology
关键词 TIMOSHENKO梁 假设剪切应变 插值形函数 Timoshenko beam assumed shear strains interpolating shape function
  • 相关文献

参考文献6

二级参考文献20

  • 1钟万勰,纪峥.理性有限元[J].计算结构力学及其应用,1996,13(1):1-8. 被引量:48
  • 2J.S.普齐米尼斯基 王德荣(译).结构矩阵分析理论[M].北京:国防工业出版社,1972.112-120.
  • 3胡海昌.弹性力学的变分原理及应用[M].北京:科学技术出版社,1992.267-280.
  • 4李华.大跨度预应力混凝土箱形刚构桥极限承载力分析:学位论文[M].长沙:长沙铁道学院土建学院,1998..
  • 5[1]Chen W F,Lui E.M.Structural Stability:Theory and Implementation.New York:Elsevier Science,1987
  • 6[2]Siu Lai Chan,Zhou Zhihua.Pointwise Equilibrating Polynomial Element For Nonlinear Analysis of Frames.JSE,1994,120(6):1 703-1 717
  • 7[3]Amjad J Aref,Guo Zaoyang.Framework for Finite-Element-Based Large Increment Method for Nonlinear Structural Problems.JEM,2001,127(7):739-746
  • 8TONG Pin,Rossettos John N.Finite-Element Method:Basic Technique and Implementation[M].Cambridge: The MIT Press,1977.
  • 9LIN Y H,Trethewey M W.Finite element analysis of elastic beams subjected to moving dynamic loads [J].Journal of Sound and Vibration,1990,136(2):323-342.
  • 10Thambiratnam D,Zhuge Y.Dynamic analysis of beams on an elastic foundation subjected to moving loads [J]. Journal of Sound and Vibration,1996,198(2):149-169.

共引文献26

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部