期刊文献+

船舶电力系统低功耗电子电路故障智能获取研究 被引量:2

Research on low power electronic circuit fault intelligent acquisition of ship power system
下载PDF
导出
摘要 低功耗电子电路是船舶电力系统的主要组成部分,也是最易出现故障的部分,针对当前船舶电力系统低功耗电子电路故障获取方法存在的不足,为了提高船舶电力系统低功耗电子电路故障获取精度,设计了基于数据挖掘的船舶电力系统低功耗电子电路故障获取方法。首先分析当前船舶电力系统低功耗电子电路故障获取研究存在的问题,指出当前获取方法存在的局限性,然后提取船舶电力系统低功耗电子电路故障特征,采用数据挖掘技术构建船舶电力系统低功耗电子电路故障获取模型,最后进行了船舶电力系统低功耗电子电路故障获取仿真实验,实验结果表明,本文方法的船舶电力系统低功耗电子电路故障获取平均精度超过95%,远远高于对比方法的船舶电力系统低功耗电子电路故障获取精度,降低了船舶电力系统低功耗电子电路故障获取错误。 Low-power electronic circuit is the main component of marine power system and the most vulnerable part of the fault. Aiming at the shortcomings of the current fault acquisition methods of low-power electronic circuit in marine power system, in order to improve the fault acquisition accuracy of low-power electronic circuit in the former marine power system, a data-based design was designed. The low power electronic circuit fault acquisition method of the former ship power system is excavated. Firstly, this paper analyzes the previous research on low-power electronic circuit fault acquisition in marine power system, points out the limitations of current acquisition methods, then extracts the fault characteristics of low-power electronic circuit in marine power system, constructs the fault acquisition model of low-power electronic circuit in marine power system by using data mining technology, and finally carries out the research. The simulation results of low power electronic circuit fault acquisition in marine power system show that the average accuracy of low power electronic circuit fault acquisition in this method is more than 95%, which is much higher than that of low power electronic circuit fault acquisition in marine power system when compared with other methods. Power electronic circuit fault acquisition error.
作者 靳晓波
出处 《舰船科学技术》 北大核心 2018年第11X期109-111,共3页 Ship Science and Technology
关键词 船舶 电力系统 低功耗电子电路 故障获取 数据挖掘 ship power system low power electronic circuit fault acquisition data mining
  • 相关文献

参考文献5

二级参考文献43

  • 1覃祖旭,张洪钺.信息融合的一般过程及在故障诊断中的应用[J].测控技术,1995,14(3):15-18. 被引量:22
  • 2汪健.[D].北京:清华大学,1997.
  • 3[3]S. Rangwala and D. A. Dornfeld. Sensor Intergration UsingNeural Networks for Intelligent Tool Condition Monitoring[J]. Journal of Engineering for Industry, Aug. 1990,112:219~228
  • 4[5]A. Chiuderi, S. Fini and V. Cappellini. An Application ofData Fusion to Landcover Classification of Remote Sensed Imagery:a Neural Network Approach[A]. Proceedings of the 1994 lnternational Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI'94)[C].Las Vegas, 1994,2~5:756~762
  • 5[7]魏强.尺度共轭梯度神经网络及其在压缩机喘振监测中的应用[D]. 西安交通大学, 1996
  • 6汪健.[D].北京:清华大学,1997.
  • 7张伟政,汪晓明,吴晓辉,李彦明.组合神经网络在变压器故障诊断中的应用[J].高压电器,2007,43(5):364-367. 被引量:16
  • 8文成林,徐晓滨.多源不确定信息融合理论及应用[M].北京.科学出版社,2012.134.
  • 9高嫒嫒.多信息融合技术在电机故障诊断中的应用研究[D].沈阳:沈阳工业大学,2009.
  • 10ZHU Yongli, HUO Limin, LU Jinling. Bayesian networks-based approach for power systems fault diagnosis [J]. IEEE Transactions on Power Delivery, 2006,21 (2) :634-639.

共引文献57

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部