期刊文献+

基于有序数据可变索引的舰船目标检测方法研究

Research on ship target detection method based on ordered data variable index
下载PDF
导出
摘要 舰船目标的检测与识别技术有重要作用,一方面,在海上交通管理和航线疏导上,舰船目标检测技术可以提供舰船准确的航行速度等信息,另一方面,海上舰船检测广泛应用于军事领域的敌方舰船侦察、锁定等,对保护海上领土有重要意义。本文主要研究了合成孔径雷达(SAR)技术,针对SAR技术舰船目标图像特征提取、噪声过滤等问题,采用一种有序数据可变索引技术,提高了舰船合成孔径雷达SAR图像处理的精度,并进行了海上舰船目标的仿真试验。 The detection and recognition technology of ship target plays an important role.On the one hand,in maritime traffic management and route guidance,ship target detection technology can provide accurate navigation speed and other information.On the other hand,the detection technology of ship on the sea is widely used in military field,such as enemy ship reconnaissance and lock-in,which is of great significance for the protection of maritime territory.In this paper,synthetic aperture radar(SAR)technology is mainly studied.Aiming at the problems of feature extraction and noise filtering of ship target image in SAR technology,an ordered data variable index technology is adopted to improve the accuracy of SAR image processing of ship synthetic aperture radar,and the simulation test of ship target at sea is carried out.
作者 张小红 梅强 ZHANG Xiao-hong;MEI Qiang(Jiangxi University of Engineering,Xinyu 338000,China)
机构地区 江西工程学院
出处 《舰船科学技术》 北大核心 2019年第8期40-42,共3页 Ship Science and Technology
基金 江西省教育厅科学技术研究资助项目(GJJ171177)
关键词 有序数据 可变索引 合成孔径雷达 图像处理 ordered data variable index synthetic aperture radar image processing
  • 相关文献

参考文献2

二级参考文献66

  • 1Jiang Y,Nishikawa RM,Schmidt RA,et al.Potential of computer-aided diagnosis to reduce variability in radiologists'interpretations of mammograms depicting microcalcifications.Radiology.2001;220:787-794.
  • 2Khademi A,Krishnan S.Medical Image Texture Analysis:A Case Study with small bowel,Retinal and mammogram images.In:Proc.21st Canadian Conference on Electrical and Computer Engineering.2008:1949-1954.
  • 3Srinivasan GN,Shobha G.Statistical texture analysis.Proc World Acad Sci.Engineer Tech.2008,36:2070-3740.
  • 4Myint SW.Fractal approaches in texture analysis and classification of remotely sensed data:comparisons with spatial autocorrelation techniques and simple descriptive statistics.Inter J Remote Sens.2003;24(9):1925-1947.
  • 5Benco M,Hudec R.Novel method for color textures features extraction based on GLCM.Radioengineering.2007;16(4):64-67.
  • 6Chen D,Wang L.Texture features based on texture spectrum.Pattern Recogn.1991;24(5):391-399.
  • 7Bracewell RN.Fourier Analysis and Imaging.Kluwer Academic Press.2003.
  • 8Hsin HC.Texture segmentation using modulated wavelet transform.IEEE Trans Image Process.2000;9(7):1299-1302.
  • 9Unser M.Sum and difference histograms for texture classification.IEEE Trans Pattern Anal Machine Intel.1986;8:1118-1254.
  • 10Mallet SA.Theory for multi-resolution signal decomposition:the wavelet representation.IEEE Trans Pattern Analysis Machine Intel.1989;11(7):674-693.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部