期刊文献+

基于离散余弦变换和主成分分析的光照条件人脸识别 被引量:3

Face recognition in illumination condition based on discrete cosine transform and principal components analysis
原文传递
导出
摘要 在光照变化条件下,人脸识别的正确率急剧下降,为了解决该难题,提出了一种离散余弦变换和主成分分析相融合的光照变化条件人脸识别方法。首先对人脸图像进行分块,并采用离散余弦变换对每一个子块提取DCT系数,然后采用主成分分析提取人脸特征,并采用深度学习算法建立人脸识别的分类器,最后采用ORL和Yale B人脸库进行仿真实验,测试其有效性和优越性。实验结果表明,相比其它光照人脸识别方法,本文方法提高了光照人脸图像的识别率,消除了光照变化的不利影响,具有较强的鲁棒性。 In the illumination Change conditions,face recognition correct rate decreased sharply,in order to solve this problem,this paper proposed a face recognition method in illumination condition based on discrete cosine transform and principal components analysis.Firstly,the face images are divided into blocks,the DCT coefficient is extracted by discrete cosine transform for each sub block,and then uses the principal components analysis is used to extract face features,and the depth learning algorithm is used to f human recognize face,finally,the simulation experiments are carried out to test the validity and superiority by using multi person face database.The experimental results show that,compared with other illumination face recognition methods,this method has a higher rate of face recognition,eliminates the adverse effects of illumination changes,and has strong robustness.
出处 《激光杂志》 北大核心 2015年第4期126-130,共5页 Laser Journal
基金 陕西省教育厅科研计划项目(2013JK1195)
关键词 光照条件 离散余弦变换 特征提取 浓度学习 主成分分析 illumination condition discrete cosine transform features extraction principal component analysis deep learning
  • 相关文献

参考文献13

  • 1Wolf, Lior,Hassner, Tal,Taigman, Yaniv.Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2011
  • 2A new solution to one sample problem in face recognition using FLDA[J]. Applied Mathematics and Computation . 2011 (24)
  • 3Ojala T,Pietikainen M,Maenpaa T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2002
  • 4J. Ruiz-del-Solar,,R. Verschae,M.Correa.Recognition of faces in unconstrained environments:A comparative study. EURASIP Journal on Advances in Signal Processing . 2009
  • 5Hinton Geoffrey E.Training products of experts by minimizing contrastive divergence. Neural Computation . 2002
  • 6Ognjen Arandjelovic.Computationally efficient application of the generic shape-illumination invariant to face recognition from video. Pattern Recognition . 2012
  • 7De Marsico, M.,Nappi, M.,Riccio, D.,Wechsler, H.Robust Face Recognition for Uncontrolled Pose and Illumination Changes. Systems, Man, and Cybernetics: Systems, IEEE Transactions on . 2013
  • 8Lei, Zhen,Liao, Shengcai,Pietikainen, Matti,Li, Stan Z.Face recognition by exploring information jointly in space, scale and orientation. IEEE Transactions on Image Processing . 2011
  • 9Guoying Zhao,Matti Pietikainen.Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2007
  • 10王洋,谢权威.基于相机响应函数的图像盲检测技术研究[J].重庆工商大学学报(自然科学版),2014,31(3):55-61. 被引量:7

二级参考文献61

  • 1Tan X, Triggs B.Enhanced local texture feature sets for face recognition under difficult lighting conditions[J].IEEE Trans on Image Processing,2010,19(6) : 1635-1650.
  • 2Zhao W,Chellappa R, Rosenfeld A.Face recognition:A literature survey[J].ACM Computing Surveys,2003,35:399-458.
  • 3Adani Y,Ullman S.Face recognition:the problem of compensat- ing for the illumination direction[C]//Proceedings of ECCV Conference, 1994 : 286-296.
  • 4Wilder J, Phillips P J, Jiang C, et al.Comparison of visible and infrared imagery for face recognition[C]//Proceedings of the IEEE AFGR Conference, 1996 : 182-187.
  • 5Li S Z,Chu R,Liao S,et al.lllumination invariant face recognition using near-infrared images[J].IEEE Trans PAMI,2007,29(4): 627-639.
  • 6Zou X, Kittler J, Messer K.Face recognition using active Near-IR illumination[C]//Procedings of BMVC Conference,2005:209-219.
  • 7Belhumeur P, Kriegman D.What is the set of images of an object under all possible illumination conditions[J].IJCV, 1998, 28 (3) : 245-260.
  • 8Basri R,Jacobs D.Lambertian reflectance and linear subspaces[C]// Proceedings of the IEEE ICCV Conference,2001:218-233.
  • 9Lee K C, Ho J, Kriegman D.Nine points of lights: Acquiring subspaces for face recognition under variable lighting[C]//Proceedings of the IEEE CVPR Conference,2001 : 519-526.
  • 10Zhou S, Aggarwal G, Chellapa R, et al.Appearance characterization of linear lambertian objects, generalized photometric stereo and illumination-invariant face recognition[J].lEEE Trans on PAMI,2007,29(2) :230-245.

共引文献58

同被引文献40

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部