期刊文献+

基于遗传算法的抽汽供热机组间的热电负荷分配优化研究 被引量:19

Optimization of Load Distribution Between Extraction Thermoelectric Heating Unit Based on Genetic Algorithms
下载PDF
导出
摘要 目前,随着电网中新能源电力的规模接入,缺乏全局优化指导的传统调度模式使得电网整体运行效率低下,火电厂的节能减排日趋重要。本文针对电厂中200 MW及600 MW供热抽汽机组间热电负荷的分配优化问题进行了相关研究,通过理论计算和现场实验相结合的方法,建立了不同热、电负荷下每台机组的热耗曲线,在考虑冷凝器背压的情况下,利用热耗曲线以及机组的耗差信号,通过遗传优化算法,实现了热电负荷分配优化,达到了节能降耗的目的。这对我国供热机组占绝大多数的北方电厂的节能优化具有一定借鉴意义。 At present grid operating's overall inefficiencies are caused by traditional scheduling mode without global optimization guidance under the condition of large- scale new energy power's integration. And conserving energy and reducing emissions are becoming increasingly important in thermal power plant. This paper researches the optimized distribution of thermal and electric load between 200 MW and 600 MW in the power plant. Through theoretical calculations and field experiments,it builds heat rate curve for each unit in various thermal and electrical load. Considering the condenser backpressure,based on heat rate curve and loss differential,the paper achieves optimized distribution of thermal and electric load by genetic algorithm. As a result,the study is a reference to the plant's energy- saving optimization,especially for the power station with many heat- supply units in the north..
出处 《节能技术》 CAS 2014年第3期201-204,共4页 Energy Conservation Technology
基金 国家重点基础研究发展计划资助项目(2012CB215201) 哈尔滨市应用技术研究与开发攻关资助项目(2012DB2CP022)
关键词 600 MW 200 MW 抽汽供热 遗传算法 热电负荷 优化分配 600 MW 200 MW heat-supply with extraction steam genetic algorithm thermal and electric load optimized distribution
  • 相关文献

参考文献13

二级参考文献143

共引文献160

同被引文献200

引证文献19

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部