期刊文献+

基于U-Net的高分辨率遥感图像语义分割方法 被引量:112

U-Net Based Semantic Segmentation Method for High Resolution Remote Sensing Image
下载PDF
导出
摘要 图像分割是遥感解译的重要基础环节,高分辨率遥感图像中包含复杂的地物目标信息,传统分割方法应用受到极大限制,以深度卷积神经网络为代表的分割方法在诸多领域取得了突破进展。针对高分辨遥感图像分割问题,提出一种基于U-Net改进的深度卷积神经网络,实现了端到端的像素级语义分割。对原始数据集做了扩充,对每一类地物目标训练一个二分类模型,随后将各预测子图组合生成最终语义分割图像。采用了集成学习策略来提高分割精度,在"CCF卫星影像的AI分类与识别竞赛"数据集上取得了94%的训练准确率和90%的测试准确率。实验结果表明,该网络在拥有较高分割准确率的同时还具有良好的泛化能力,能够用于实际工程。 Image segmentation is an important base-part of remote sensing interpretation.High resolution remote sensing image contains complex object information,but the applications of traditional segmentation methods are greatly limited.The segmentation method,represented by the deep convolution neural network,has made a breakthrough in many fields.Aiming at the problem of high resolution remote sensing image segmentation,this paper proposes a deep convolution neural network based on U-Net,which achieves the end to end pixel level semantic segmentation.It expands the original dataset,trains a binary classification model for every class of objects,and then combines the prediction subgraphs to generate the final semantic segmentation image,which has helped us get 94%training accuracy and 90%test accuracy on the dataset of AI classification and recognition contest of CCF satellite images.The experimental results show that the network not only has good generalization ability but also can be used in practical engineering with high segmentation accuracy.
作者 苏健民 杨岚心 景维鹏 SU Jianmin;YANG Lanxin;JING Weipeng(College of Information and Computer Engineering,Northeast Forestry University,Harbin 150040,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第7期207-213,共7页 Computer Engineering and Applications
基金 黑龙江省自然科学基金(No.C200840 No.F201028)
关键词 遥感图像 语义分割 卷积神经网络 U-Net 集成学习 remote sensing image semantic segmentation convolutional neural network U-Net ensemble learning
  • 相关文献

参考文献3

二级参考文献94

  • 1林剑,鲍光淑,王润生,王欣.基于模糊密度分解的遥感图像光谱和纹理信息的融合[J].电子学报,2004,32(12):2028-2030. 被引量:10
  • 2宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学,2005,19(1):143-148. 被引量:81
  • 3丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 4刘思远,李晓峰,吴宏刚,李在铭.FCM与马氏空间约束条件下的快速图像分割技术研究[J].计算机应用研究,2007,24(8):220-222. 被引量:3
  • 5Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.
  • 6LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
  • 7Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303.
  • 8Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429.
  • 9Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009.
  • 10Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.

共引文献219

同被引文献847

引证文献112

二级引证文献556

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部