期刊文献+

基于多群智能算法的云计算任务调度策略 被引量:10

Task Scheduling in Cloud Computing Based on Swarm Intelligence Algorithm
下载PDF
导出
摘要 为提高云计算任务调度的服务质量(QoS),提出一种多群智能算法的云计算任务调度策略。首先利用全局搜索能力强的遗传算法快速找到云计算任务调度问题的较优解,然后将较优解转换成蚁群优化算法的初始信息素,最后通过蚂蚁间的信息交流和反馈找到云计算任务调度的全局最优解。以CloudSim为仿真平台进行了模拟实验,结果表明,与同类算法相比,多群智能算法不仅大幅提高了云计算任务调度效率,而且减少了处理请求任务的平均完成时间。 In order to improve the QoS of task scheduling of cloud computing,this paper proposed a cloud computing task scheduling model based on warm intelligent algorithm.Firstly,genetic algorithm which has global search ability is used to quickly find he optimal solutions of cloud computing task ssheduling problem,and then the optimal solutions are converted to the initial pheromone of ant colony optimization algorithm,finally,the global optimal solution of cloud computing task scheduling is obtained by information communication and feedback among ants.The simulated experiment was carried out on cloudsim platform.The experimental results show that compared with other models,the proposed model significantly improves the efficiency of cloud computing tasks scheduling and reduces the completion time.
作者 陈海燕
出处 《计算机科学》 CSCD 北大核心 2014年第S1期83-86,共4页 Computer Science
基金 国家社会科学基金项目(06BFX051) 上海高校选拔培养优秀青年教师科研专项基金(hzf05046)资助
关键词 云计算 遗传算法 蚁群优化算法 任务调度 Cloud computing,Genetic algorithm,Ant colony opt optimization algorithm,Task scheduling
  • 相关文献

参考文献7

二级参考文献104

  • 1段海滨,王道波,于秀芬,朱家强.基于云模型理论的蚁群算法改进研究[J].哈尔滨工业大学学报,2005,37(1):115-119. 被引量:44
  • 2徐精明,曹先彬,王煦法.多态蚁群算法[J].中国科学技术大学学报,2005,35(1):59-65. 被引量:66
  • 3VARIA J. Cloud architectures - Amazon Web services [ EB/OL]. [ 2009 - 03 - 01 ]. http://acmbangalore, org/events/monthly-talk/ may-2008 --cloud-architectures---amazon-web-services. html.
  • 4BRYANT R E. Data-intensive supercomputing: The case for DISC, CMU-CS-07-128 [ R]. Pittsburgh, PA, USA: Carnegie Mellon University, Department of Computer Science, 2007.
  • 5SZALAY A S, KUNSZT P, THAKAR A, et al. Designing and mining multi-terabyte astronomy archives: The sloan digital sky survey [ C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2000:451 - 462.
  • 6BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: The Google cluster architecture [ J]. IEEE Micro, 2003, 23(2) : 22 -28.
  • 7GILES J. Google tops translation ranking [ EB/OL]. (2006 - 11 - 06) [ 2009 - 03 - 06 ]. http://www, nature, com/news/2006/ 061106/full/news061106-6. html.
  • 8维基百科.Cloud computing [ EB/OL]. [ 2009 - 03 - 10]. http://en. wikipedia, org/wiki/Cloud_computing.
  • 9中国云计算网.什么是云计算?[EB/OL].(2008-05-14)[2009-02-27].http://www.cloudcomputing-china.cn/Article/ShowArticle.asp?ArticleID=1.
  • 10VAQUERO L M, RODERO-MERINO L, CACERES J, et al. A break in the clouds: Towards a cloud definition [ J]. ACM SIGCOMM Computer Communication Review, 2009, 39(1): 50-55.

共引文献1691

同被引文献136

  • 1吴秀丽,孙琳.智能制造系统基于数据驱动的车间实时调度[J].控制与决策,2020,35(3):523-535. 被引量:27
  • 2吴俊,陈晴,罗军舟.时隙间迭代的输入队列交换机Round-Robin调度算法[J].软件学报,2005,16(3):375-383. 被引量:11
  • 3高强,闫敦豹,袁乃昌.一种基于遗传算法的AMC结构设计[J].电子学报,2006,34(9):1686-1689. 被引量:6
  • 4龚宇,熊光楞.机器学习在智能车间调度系统中的应用[J].控制与决策,1997,12(3):222-227. 被引量:12
  • 5Bayraktar Z, Komurcu M, Werner D H. Wind driven optimization (WDO) : a novel nature-inspired optimi- zation algorithm and its application to eleetromagneties [ C] //Antennas and Propagation Society International Symposium (APSURSI) , 2010 IEEE,2010 : 1 -4.
  • 6Bayraktar Z, Komurcu M, Bossard J A, et al. The wind driven optimization technique and its application in electromagnetics [ J ]. IEEE Transactions on Antennas and Propagation, 2013, 61 (5) : 2745 - 2757.
  • 7Bayraktar Z, Komureu M, Jiang Z H, et al. Stub - loaded inverted - F antenna synthesis via wind driven optimization [ C ] //Antennas and Propagation ( AP- SURS. l. ), 2011 IEEE International Symposium on IEEE. IS. 1. ] :IEEE,2011 : 2920-2923.
  • 8Bayraktar Z, Turpin J P, Werner D H. Nature-inspired optimization of high-impedance metasurfaces with ul- trasmall interwoven unit cells [ J ]. Antennas and Wire- less Propagation Letters, IEEE, 2011, 10: 1563 - 1566.
  • 9Bhandari A K, Singh V K, Kumar A, et al. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur' s entropy [ J ]. Expert Systems with Applications ,2014, 41 (7) : 3538 - 3560.
  • 10Sun J, Wang X, Huang M, et al. A cloud resource al- location scheme based on microeconomics and wind driven optimization [ C ]//ChinaGrid Annual Conference (ChlnaGrid) ,2013 8th IEEE. [ S. 1. ] :IEEE,2013 : 34 - 39.

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部