期刊文献+

一种数据挖掘中的W-PAM限制聚类算法 被引量:9

W-PAM Restricted Clustering Algorithm in Data Mining
下载PDF
导出
摘要 在数据挖掘中由于每个数据对象对于知识发现的作用是不同的,为了区分这些相异之处,给每个对象赋予一定量的值,因此在PAM聚类算法的基础上提出一种W-PAM(Weight Partitioning Around Medoids)聚类算法,它为簇中数据对象加入权重来提高算法的准确率,此外利用数据对象间的关联限制能够提高聚类算法的效果。探讨了一种W-PAM算法与关联限制相结合的限制聚类算法,该算法同时拥有W-PAM算法和关联限制的优点。实验结果证明,W-PAM的限制聚类算法可以更有效地利用所给的关联限制来改善聚类效果,提高算法的准确率。 In data mining,the effect of each data object on knowledge discovery is different.In order to distinguish these differences,this paper gave a certain amount of value to each object,and put forward a W-PAM(Weight Partitioning Around Medoids)clustering algorithm which is based on the PAM algorithm.It can improve the accuracy of the algorithm by adding weight to the data object in the cluster.Moreover,the effect of clustering algorithm can be improved by using the association among the data objects.In this paper,a W-PAM restricted clustering algorithm was proposed,which combines the W-PAM algorithm with the constraint clustering algorithm.The algorithm has advantages of the W-PAM restricted clustering algorithm and relevance constraints.The experimental results show that the W-PAM restricted clustering algorithm can effectively improve the clustering result and improve the accuracy of the algorithm.
作者 张松 张琳
出处 《计算机科学》 CSCD 北大核心 2016年第S2期447-450,共4页 Computer Science
基金 国家自然科学基金(61402241 61572260 61373017 61572261 61472192) 江苏省科技支撑计划(BE2015702)资助
关键词 数据挖掘 W-PAM 关联限制 限制聚类 Data mining W-PAM Association restriction Restricted clustering
  • 相关文献

参考文献6

二级参考文献78

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2李大军,程朋根,龚健雅,熊助国.多维随机变量的熵不确定度[J].计量学报,2006,27(3):290-293. 被引量:6
  • 3常建龙,曹锋,周傲英+.基于滑动窗口的进化数据流聚类[J].软件学报,2007,18(4):905-918. 被引量:61
  • 4Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis. New Jersey: John Wiley & Sons, 1990.
  • 5Jain AK, Murty MN, Flynn PJ. Data clustering: A review. ACM Computing Surveys, 1999,31(3):264-323. [doi: 10.1145/331499. 331504].
  • 6Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans. on Neural Networks, 2005,16(3):645-678. [doi: 10.1109/TNN. 2005.845141].
  • 7Shi JB, Malik J. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(8): 888-905. [doi: 10.1109/34.868688].
  • 8Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition, 1993,26(9):1277-1294. [doi: 10.1016/0031- 3203(93)90135-J].
  • 9Datta R, Joshi D, Li J, Wang JZ. Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys, 2008, 40(2):1-60. [doi: 10.1145/1348246.1348248].
  • 10MacQueen JB. Some methods for classification and analysis of multivariate observations. In: Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability. 1967.281-297.

共引文献1236

同被引文献51

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部