期刊文献+

容器云环境虚拟资源配置策略的优化 被引量:8

Optimization of virtual resource deployment strategy in container cloud
下载PDF
导出
摘要 针对容器化云环境中数据中心能耗较高的问题,提出了一种基于最佳能耗优先(Power Full, PF)物理机选择算法的虚拟资源配置策略。首先,提出容器云虚拟资源的配置和迁移方案,发现物理机选择策略对数据中心能耗有重要影响;其次,通过研究主机利用率与容器利用率,主机利用率与虚拟机利用率,主机利用率与数据中心能耗之间的数学关系,建立容器云数据中心能耗的数学模型,定义出优化目标函数;最后,通过对物理机的能耗函数使用线性插值进行模拟,依据邻近事物相类似的特性,提出改进的最佳能耗优先物理机选择算法。仿真实验将此算法与先来先得(First Fit, FF)、最低利用率优先(Least Fit, LF)、最高利用率优先(Most Full, MF)进行比较,实验结果表明,在有规律不同物理机群的计算服务中,其能耗比FF、LF、MF分别平均降低45%、53%和49%;在有规律相同物理机群的计算服务中,其能耗比FF、LF、MF分别平均降低56%、46%和58%;在无规律不同物理机群的计算服务中,其能耗比FF、LF、MF分别平均降低32%、24%和12%。所提算法实现了对容器云虚拟资源的合理配置,且在数据中心节能方面具有优越性。 Aiming at high energy consumption of data center in container cloud,a virtual resource deployment strategy based on host selection algorithm with Power Full(PF)was proposed.Firstly,the allocation and migration scheme of virtual resource in container cloud was proposed and the significant impact of host selection strategy on energy consumption of data center was found.Secondly,by studying the mathematical relationship between the utilization of host and the utilization of containers,between the utilization of host and the utilization of virtual machines and between the utilization of host and energy consumption of data center,a mathematical model of the energy consumption of data center in container cloud was constructed and an optimization objective function was defined.Finally,the function of host's energy consumption was simulated using linear interpolation method,and a host selection algorithm with PF was proposed according to the clustering property of the objects.Simulation results show that compared with First Fit(FF),Least Full(LF)and Most Full(MF),the energy consumption of the proposed algorithm is averagely reduced by 45%,53%and 49%respectively in the computing service of regular tasks and different host clusters;is averagely reduced by 56%,46%and 58%respectively in the computing service of regular tasks and same host cluster;is averagely reduced by 32%,24%and 12%respectively in the computing service of irregular tasks and different host clusters.The results indicate that the proposed algorithm realizes reasonable virtual resource deployment in container cloud,and has advantage in data center energy saving.
作者 李启锐 彭志平 崔得龙 何杰光 LI Qirui;PENG Zhiping;CUI Delong;HE Jieguang(College of Mathematics and Information Science,Guangzhou University,Guangzhou Guangdong 510006,China;College of Computer and Electronic Information,Guangdong University of Petrochemical Technology,Maoming Guangdong 525000,China)
出处 《计算机应用》 CSCD 北大核心 2019年第3期784-789,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61672174 61772145) 广东省科技计划项目(2017ZC0346) 广东省云机器人(石油化工)工程技术研究中心开放基金资助项目(650007) 广东省教育厅重点平台及科研项目(2016KQNCX105 2017KTSCX128)~~
关键词 云计算 容器 虚拟资源配置 数据中心能耗 资源利用率 cloud computing container allocation of virtual resource energy consumption of data center utilization of resource
  • 相关文献

参考文献6

二级参考文献38

  • 1李文雅,欧宜贵.层次分析法在求解某些优化问题中的应用[J].高等数学研究,2007,10(1):62-64. 被引量:12
  • 2Barham P, Dragovie B, Fraser K, et al. Xen and the art of virtualization//Proceeding of the 19th ACM Symposium on Operating Systems Principles. New York, USA, 2003: 164-177.
  • 3Soltesz S, P6tzl H, Fiuczynski M E, et al. Container-based operating system virtualization: A scalable, high-performance alternative to hypervisors. ACM SIGOPS Operating Systems Review, 2007, 41(3): 275-287.
  • 4Costaehe S, Parlavantzas N, Morin C, et al. Use cases of virtualization in the management of distributed and parallel systems. Rennes, France: INRIA Rennes-Bretagne Atlantique, Systfimes et services distribu6s Equipe-Projet: 0399, 2010.
  • 5Zhang Yu-Ting, Bestavros A, Guirguis M, et al. Friendly virtual machines: Leveraging a feedback-control model for application adaptation//Proceedings of the 1st ACM/USENIX International Conference on Virtual Execution Environments. Chicago, USA, 2005: 2-12.
  • 6Kesavan M, Ranadive A, Gavrilovska A, Schwan K. Active coordination ( act )-toward effectively managing virtualized multicore clouds//Proceedings of the IEEE International Conference on Cluster Computing. Tsukuba, Japan, 2008: 23-32.
  • 7Rao Jia, Bu Xiang-Ping, Xu Cheng-Zhong, et al. Vconf: A reinforcement learning approach to virtual machines auto-configuration//Proceedings of the 6th International Conference on Autonomic Computing. Barcelona, Spain, 2009:137-146.
  • 8Xu Jing, Zhao Ming, Fortes Jos6, et al. Autonomic resource management in virtualized data centers using fuzzy logic- based approaehes//Proceedings of the 2008 IEEE International Conference on Cluster Computing. Tsukuba, Japan, 2008: 213-227.
  • 9Zhu Xia:Yun, Uysal Mustafa, Wang Zhi-Kui, et al. What does control theory bring to systems research? ACM SIGOPS Operating Systems Review, 2009, 43(1): 62-69.
  • 10Padala P, Shin K G, Zhu Xiao Yun, et al. Adaptive control of virtualized resources in utility computing environments. ACM SIGOPS Operating Systems Review, 2007, 41 (3): 289-302.

共引文献172

同被引文献62

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部