期刊文献+

关于无线网络用户需求信息快速识别仿真

Rapid Identification and Simulation of User Demand Information in Wireless Network
下载PDF
导出
摘要 对无线网络用户需求信息进行快速识别,能够满足网络用户的基本需要,对用户需求信息进行识别,需要利用空间向量模型描述用户需求信息数据,将训练样本输入到支持向量机分类器中进行训练。传统方法将用户需求信息转换为查询词矢量数据,计算相应信息所属领域模型的概率,但忽略了用户信息的不平衡性,导致收敛速度较慢。提出一种基于支持向量机优化的无线网络用户需求信息快速识别方法,采用特征词出现的频率来表示用户信息数据的矢量特征,利用空间向量模型描述用户数据,计算用户数据集中的全部特征词权值完成预处理。将预处理后用户需求信息数据样本进行训练,并采用协同进化的粒子群算法对支持向量机分类器参数进行优化,实现无线网络用户需求信息的快速识别。仿真证明了所提方法能够有效识别出无线网络用户需求信息,且具有收敛速度快的优点。 The fast recognition of user requirement information in wireless network can meet the basic requirements of network users and identify the requirement information.The traditional method ignores the imbalance of user information,leading to the slow convergence.In this paper,we focus on a method to fast recognize user requirement information in wireless network based on support vector machine.The occurrence frequency of feature word was used to denote the vector feature of user information data,and then the space vector model was used to describe the user data and calculate the weight value of all the feature words in user data set.Moreover,the preprocessed data samples of user requirement information were trained.Finally,the particle swarm optimization based on co-evolutionary was used to optimize the parameters of support vector machine classifier.Thus,we could realize the rapid recognition of user requirement information in wireless network.Simulation results show that the proposed method can effectively recognize the requirement information in wireless network,which has fast convergence.
作者 王彩霞 张志刚 WANG Cai-xia;ZHANG Zhi-gang(School of Software,Liaoning University of Science and Technology,Anshan Liaoning 114051,China;School of Computer Science and Technology,Dalian University of Technology,Dalian Liaoning 116024,China)
出处 《计算机仿真》 北大核心 2019年第4期392-395,共4页 Computer Simulation
关键词 无线网络 用户需求信息 快速识别 Wireless network User requirement information Fast recognition
  • 相关文献

参考文献10

二级参考文献86

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部