期刊文献+

基于边缘点对特征的板型物体识别与定位系统 被引量:6

Efficient planar object recognition and localization system based on boundary point pair feature
下载PDF
导出
摘要 针对工业环境中板型物体(如钢板),在基于投票策略的匹配算法基础上加入了边缘点对特征,提出了一种基于边缘点对特征的三维目标识别与定位方法,并利用该算法设计实现了一个钢板识别与定位系统,已成功应用于工业机器人自动钢板打磨项目中。另外,对匹配结果使用位姿聚类以及位姿验证与优化,进一步提高了算法的准确性和鲁棒性。根据系统在工作现场的运行统计结果得出,该方法不仅定位精度在项目容忍范围之内,而且满足项目对实时性的要求。 Aiming at common planar objects in industrial environment(e. g. steel plates),on the basis of the voting-based pose estimation algorithm,this paper proposed an efficient planar object recognition and localization algorithm based on boundary point pair feature,which was successfully applied in the automatic grinding system of steel plates with industrial robot. In addition,the using of pose clustering algorithm as well as methods of pose verification and pose refinement efficiently increased the accuracy and robustness of the system. According to the statistical results of the system in industrial environment,not only the pose localization accuracy is well within the tolerances for the grasping of steel plates,but also the processing time meets the real-time requirement of the system.
作者 赵银帅 吴清潇 付双飞 张正光 Zhao Yinshuai;Wu Qingxiao;Fu Shuangfei;Zhang Zhengguang(Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;University of Chinese Academy of Sciences,Beijing 100049,China;Key Laboratory of Opto-Electronic Information Processing,Chinese Academy of Sciences,Shenyang 110016,China;Liaoning Province Key Laboratory of Image Understanding & Computer Vision,Shenyang 110016,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第2期601-605,共5页 Application Research of Computers
基金 国家自然科学基金-深圳机器人基础研究中心项目(U1713216)
关键词 三维边缘提取 点对特征 投票策略 位姿估计 3D edge extraction point pair feature voting strategy pose estimation
  • 相关文献

参考文献4

二级参考文献51

  • 1查英,刘铁根,杜东.图像识别技术在零件装配自动识别中的应用[J].计算机工程,2006,32(10):178-179. 被引量:26
  • 2CANNY J.A computational approach to edge detection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
  • 3ANDO S. Image Field Categorization and Edge/Corner Detection from Gradient Covariance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(2):179-190.
  • 4FROME A, HUBER D, KOLLURI R. Recognizing Objects in Range Data Using Regional Point Descriptors[C]//8th European Conference on Computer Vision. Prague:Czech republic, 2004.
  • 5FREI W, CHEN C C. Fast Boundary Detection:A Generalized and a New Algorithm[J]. IEEE Transactions on Computers, 1977, 26(10):988-998.
  • 6SHANMUGAM K S, DICKEY F M, GREEN J A. An Optimal Frequency Domain Filter for Edge Detection in Digital Pictures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, 1(1):37-49.
  • 7CANNY J. A Computational Approach to Edge Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698.
  • 8MEER P, GEORGESCU B. Edge Detection with Embedded Confidence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(12):1351-1365.
  • 9BALLARD D H. Generalizing the Hough Transform to Detect Arbitrary Shapes[J]. Pattern Recognition, 1981, 13(2):111-122.
  • 10BURNS J B, HANSON A R, RISEMAN E M. Extracting Straight Lines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(4):425-455.

共引文献125

同被引文献50

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部