期刊文献+

高安全性混沌同步保密通信方案设计 被引量:7

Design of the chaotic synchronized secure communication scheme with high security
下载PDF
导出
摘要 设计了一种以主动-被动同步机制为基础的混沌同步保密通信方案,方案提出了获取混沌变量中对参数敏感的信息和改善相关特性的方法,得到满足安全性要求的新变量,并用于对被加密信号进行调制。用Lorenz系统进行计算机仿真通信实验和特性分析的结果表明,本方案同步特性优良,信号恢复精度高,安全性比原方案有明显提高。 A chaotic secure communication scheme based on active-passive decomposition synchronizing is presented,aiming to have both nice synchronized behavior and high security. The methods are proposed to generate the modulation signal with high sensitivity to the parameters and satisfied auto correlation and cross correlation. The effectiveness of the scheme has been proved by the computer simulation using Lorenz equations. The results demonstrate that the scheme is accurate in signal recovery and much more safer than the original scheme.
作者 翁贻方 鞠磊
出处 《通信学报》 EI CSCD 北大核心 2003年第2期44-50,共7页 Journal on Communications
基金 北京市自然科学基金资助项目(4002004) 北京市教育委员会科技发展计划项目(00KJ048)
关键词 混沌同步 保密通信 敏感性 安全性 chaos synchronization secure communication sensitivity security
  • 相关文献

参考文献2

二级参考文献41

  • 1方锦清.超混沌同步及其超混沌控制[J].科学通报,1995,40(4):306-310. 被引量:21
  • 2[1] National Bureau of Standards. FIPS PUB 46 Data Encryption Standards[S]. Washington DC : Federal Information Processing Standard, US Dept. Of Commerce, 1977.
  • 3[2]Revest R L, Shamir A, and Adleman L M. A method for obtaining digital signature and public-key cryptosystems[J]. Communications of the ACM, 1978,21:120~126.
  • 4[3]Diffie W and Hellman M F. New directions in cryptograghy[J]. IEEE Transactions in Information Theory, 1976,IT-22:644~654.
  • 5[4]ElGamal T. A public key cryptosystem and a signature scheme base on discret logarithm[A]. Advances in Cryptology, Proceedings of CRYPTO'84[C]. Berlin: Springer-Verlag Lecture Notes in Computer Science, 1985,196:10~18.
  • 6[5]Koblitz N. Elliptic curve cryptosystems[J].Mathematics of Computation, 1987,(48):203~209.
  • 7[6]Miller V S. Use of elliptic curves in cryptograghy[A]. Advances in Cryptology, Proceedings of CRYPTO'85[C]. Berlin: Springer-Verlag Lecture Notes in Computer Science, 1986,218:417~426.
  • 8[7]Fujisaka H and Yamada T. Stability theory of synchronized motion in coupled-oscillator systems[J]. Porg Theor Phys, 1983,69:32~47.
  • 9[8]Pecora L M and Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990,64:821~823.
  • 10[9]Rulkov N F, Sushchik M M and Tsimring L S. Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Phys Rev, 1995,E50:980~994.

共引文献144

同被引文献44

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部