期刊文献+

动磁场磁流变效应抛光垫抛光力特性试验研究 被引量:4

Experimental Investigations on the Polishing Forces Characteristics of Dynamic Magnetic Field Magnetorheological Effect Polishing Pad
原文传递
导出
摘要 基于动磁场磁流变效应抛光方法,采用微型压电式传感器测试分析动磁场磁流变效应抛光垫法向抛光力特性,研究磁极转速、加工间隙、工件运动方式对动磁场磁流变效应抛光力的影响。结果表明,动磁场磁流变效应平面抛光法向力在抛光垫中心区域最大,pv值在抛光垫的半径6 mm处最大;相对静磁场,在磁极转动的动磁场作用下磁流变抛光力和扭矩呈现大幅度波动的动态行为;动磁场磁流变效应抛光力受到磁极转速影响,大于15 r/min开始产生动磁场,在试验所测得的范围内,磁极转速30 r/min左右有最好效果;工件运动方式是影响磁流变抛光作用力的因素,当工件沿抛光盘径向往复偏摆时扭矩剧烈变化,沿抛光盘法向运动加工间隙减小时抛光法向力会瞬间急剧增大,最大峰值达到稳态值的25倍。 Based on the dynamic magnetic field magnetorheological effect(DMFME) polishing technology, the characteristics of polishing normal force of DMFME polishing pad is tested and analyzed by the micro piezoelectric sensor. The influences of the revolving speeds of magnetic pole, the machining gaps, the movement methods of workpiece on the polishing force are researched. It is found that the maximal MR effect plane polishing normal force of DMFME appeared on the central zone, but the maximal pv value came up in the radius of 6 mm. Compared with the static magnetic field, the MR polishing force and the torque presented significant dynamic behavior under the dynamic magnetic field formed by the rotating magnetic pole. The dynamic magnetic field became more remarkable when the revolving speed of magnetic pole greater than 15 r/min, and the best DMFME is acquired when the speed is 30 r/min. The movement methods of workpiece also affected the DMFME polishing force. The torque is varied violently when the workpiece oscillated along the polishing plate. The normal force of DMFME polishing drastically increased when the machining gaps is reduced, its maximum peak reached 25 times of the steady state value.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2018年第6期10-17,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(51375097) 广东省科技计划(2016A010102014) 广东省自然科学基金重点(2015A030311044)资助项目
关键词 动态磁场 磁流变抛光 法向力 扭矩 抛光垫 dynamic magnetic field magnetorheological finishing normal force torque polishing pad
  • 相关文献

参考文献5

二级参考文献61

  • 1孙希威,张飞虎,董申,栾殿荣.磁流变抛光光学曲面的两级插补算法[J].光电工程,2006,33(2):61-64. 被引量:11
  • 2姜守振,徐现刚,李娟,陈秀芳,王英民,宁丽娜,胡小波,王继杨,蒋民华.SiC单晶生长及其晶片加工技术的进展[J].Journal of Semiconductors,2007,28(5):810-814. 被引量:17
  • 3PROKHOROV I V, KORDONSKI W I. New high-precision magnetorheological instruments-based method of polishing optics[J]. OSA OF&T Workshop Digest, 1992, 24. 134-136.
  • 4PRESTON F W. Glass technology[J]. Journal of the Society of Glass Technology, 1927, 11: 277-281.
  • 5RABINWEICZ E, RUSSEL P G. A study of abrasive wear under three body conditions[J]. Wear, 1961, 4(2). 345-355.
  • 6SHIN T H, LIOU W W, SHABBIR A, et al. A new k-e eddy viscosity model for high reynolds number turbulent flows[J]. Comput. Fluids, 1995, 24(3): 227-238.
  • 7ANNALAND M V S, DEEN N G, KUIPERS J A M. Multi-level computational fluid dynamics models for the description of particle mixing and granulation in fluidized beds[J]. Handbook of Powder Technology, 2007, 11 : 1071-1107.
  • 8DU Wei, BAO Xiaojun, XU Jian, et al. Computational fluid dynamics (CFD) modeling of spouted bed: influence of frictional stress, maximum packing limit and coefficient of restitution of particles[J]. Chemical Engineering Science, 2006, 61(14): 4558-4570.
  • 9Zolper J C. Emerging Silicon Carbide Power ElectronicsComponents[C]//Applied Power Electronics Conferenceand Exposition, 2005. Twentieth Annual IEEE. AustinTX,2005: 11-17.
  • 10Jain V K, Ranjan P, Suri V K. et al. Chemo—me-chanical Magneto—rheological Finishing (CMMRF)of Silicon for Microelectronics Applications [ J ].CIRP Annals—Manufacturing Technology, 2010,59(1): 323-328.

共引文献99

同被引文献31

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部