期刊文献+

基于离散平稳小波变换的红外图像去噪 被引量:13

Infrared image de-noising based on discrete stationary wavelet transform
原文传递
导出
摘要 提出了一种基于离散平稳小波变换的红外图像去噪方法。在预先不知道噪声方差的前提下,只利用红外图像的输入数据就可以确定所要求的渐近最优阈值。对红外图像进行离散平稳小波变换后,分别对各个分解层的高频子带利用所提出的方法进行迭代去噪,使各个高频子带分别收敛于其最大信噪比。实验结果表明,所提出的方法在有效的去除红外图像噪声的同时,又能较好的保持红外图像的细节部分信息。算法在性能指标和视觉质量上均优于基于离散正交小波变换的阈值去噪方法和传统的中值滤波法。 A kind of infrared image threshold denoising method based on discrete stationary wavelet transform is given. It combines stationary wavelet trasform with generalized cross validation successfully. An asymptotically optimal threshold can be determined, without knowing the variance of noise, only using the known input data. After making discrete stationary wavelet transform to an infrared image, denoising is done in the high frequency subbands of each decomposition level respectively, so that the maximum signalnoiseratio can be obtained in the high frequency subbands respectively. According to the result of experiment, the given algorithm can reduce the noise of infrared image effectively while it also keeps the detail information of infrared image well. In performance and visual quality, the algorithm is better than the wavelet denoising based on discrete orthogonal wavelet transform and the conditional median value filtering method.
出处 《光学技术》 CAS CSCD 2003年第2期250-253,256,共5页 Optical Technique
基金 兵科院预研基金资助项目
关键词 红外图像 平稳小波变换 广义交叉确认 阀值去噪 discrete stationary wavelet transform generalized cross validation de-noising by threshold
  • 相关文献

参考文献12

  • 1[1]D Donoho. De-noising via soft thresholding[R]. Department of Statistics,Stanford University,1992.
  • 2[2]D L Donoho,I M Johnstone. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika,1994,81:425~455.
  • 3[3]Donoho David L. Denoising by soft thresholding [J]. IEEE Trans on Information Theory,1995,41(3):613~627.
  • 4[4]Donoho David L,Jhonstone lain M. Threshold selection for wavelet shrinkage of noisy data [A]. In: Proc 16th Annual International Conference of IEEE Engineering in Medicine and Biology Society[C],Baltimore,Maryland. 1994.
  • 5[5]S Grace Chang,Bin Yu,Martin Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Trans on Image Processing,2000,9(9):1522~1531.
  • 6[6]M Lang,H Guo,J E odegend,et al. Nonlinear processing of a shift-invariant DWT for noise reduction[A]. In SPIE Conference on wavelet applications[C].1995.
  • 7[7]J C Pesquet,H Krim,H Carfanman. Time invariant orthonormal wavelet representations[A].Submitted to IEEE Trans[C].1994.
  • 8[8]M J Shensa.The discrete wavelet transform:wedding the a trous and Mallat algorithms[J].IEEE Trans.Information Theory,40:2464~2482.
  • 9[9]C Beylkin.On the representation of operators in bases of compactly supported wavelets[J].SIAM J Numer,1992,29(1):1716~1740.
  • 10[10]I M Johnstone,B W Silverman.Wavelet threshold estimators for data with correlated noise[J]. Journal of the Royal Statistical Society,1997,59:319~351.

同被引文献115

引证文献13

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部