摘要
研究含双周期分布的圆形刚性夹杂在无穷远受纵向剪切的弹性平面问题,遵循复合材料中各夹杂相互影响的重要条件,采用复变函数方法,构造相应模型的复应力函数,通过坐标变换,同时满足夹杂边界位移条件,再利用围线积分将求解方程组化为线性代数方程组,导出了圆形刚性夹杂双周期分布的界面应力解析表达式,算例给出了界面应力最大值与夹杂间距的变化规律,求出了刚性夹杂的合理间距问题。本文发展的分析方法为研究夹杂材料的细观机理探索了一条有效的分析途径。
Accordung to the important principle of interatction among the inclusions in the composite micro-mechanics, complex stress functions which reflect the interaction of doubly periodical circular rigid inclusions distributed in the iso tropic matrix, were constructed by the means of coordinate transformation. The boundary condition of every inclusion was satisfied. By the circulation integral, the linear algebraic e-quations were solved. Under the load of anti-plane shear in the infinite plane of iso tropic elastic matrix, the interface stress formula,the numerical results and the graph,which reflect that interface stress maximum varies with the distance between the adjacent inclusions have been obtained.
出处
《力学季刊》
CSCD
北大核心
2003年第1期142-145,共4页
Chinese Quarterly of Mechanics
关键词
圆形刚性夹杂
双周期分布
反平面问题
界面应力
夹杂间距
circular rigid inclusions
doubly periodic distribution
anti-plane problem
interface stress max- imum
distance between the adjacent inclusions