期刊文献+

基于迭代学习的硅锰炉自动配料系统研究 被引量:1

Study on Manganese Furnace Automatic Batching System Based on Iterative Learning
下载PDF
导出
摘要 硅锰炉自动配料系统属于一种特殊的计量监控系统,其原理是结合将配料工艺与配方比例相结合,从而在此基础上展开动态定量称重。然而在进行配料时,由于空中余量的存在,必然会导致称量误差的出现,从而影响配料的精度,本文根据物料称量过程,提出了配料过程的迭代自学习称量反馈控制系统图;这种迭代学习控制算法能够实现对称量系统的精准控制,同时也通过实验对这一算法进行了检验。结果表明该算法对提高硅锰炉配料系统的精度有较好的作用。 Guimeng furnace automatic batching system belongs to a special measuring and monitoring system, its principle is combining the batching process and formula of proportional combination, and on the basis of dynamic quantitative weighing.However, in the ingredients, because the air margin exists, will inevitably lead to the emergence of the weighing error, thus affecting the accuracy of the batching, according to weighing process, put forward the self-learning control system diagram weighing feedback iterative blending process; the iterative learning control algorithm to achieve the precise control of the weighing system, but also through the experimental results verify the effectiveness of the algorithm. The results show that the algorithm has a good effect on improving the accuracy of silicomanganese furnace proportioning system.
机构地区 西安科技大学
出处 《科教导刊》 2017年第7期25-26,73,共3页 The Guide Of Science & Education
关键词 空中余量 迭代学习控制 配料系统 air margin iterative learning control batching system
  • 相关文献

参考文献1

二级参考文献7

共引文献2

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部