期刊文献+

基于四元数法的空空导弹数学模型建模研究 被引量:2

Study of Air-to-air Missile Modeling Based on Quaternion Method
下载PDF
导出
摘要 空空导弹的运动方程通常用一组基于欧拉角的微分方程来表示,但欧拉角方程有时具有奇异性,会使得微分方程不可求解,而采用四元数法则可以有效克服这一问题。本文以现有基于欧拉角的空空导弹六自由度数学模型为基础,用导弹各个坐标系之间的转换关系以及四元数来表示刚体的平移和转动,把已知的欧拉角导弹模型转换为四元数导弹模型。以样例导弹为对象,分别将欧拉角模型和四元数法模型在Matlab环境下进行了仿真,结果表明四元数法模型与欧拉角模型的仿真结果一致,并且四元数法模型具有更快的运行速度。 The equation of motion of air-to-air missile is usually represented by a set of differential equations of Euler angles. Euler angle has a singularity equations, differential equations can not be solved sometimes, while the use of quaternion can overcome this problem. In this paper, the Euler angles of the existing missile 6dof mathematical model is used to convert between various coordinate systems and missile quaternion to represent the translational and rotational rigid body, the missile model of Euler angles can be converted to quaternion missile model. To an sample missile model, the Euler angle mode and quaternion model were both simulated in matlab environment, simulation results show that the quaternion model and the Euler angle model have the same outputs and quaternion model with faster speed.
出处 《科技信息》 2014年第7期51-52,共2页 Science & Technology Information
关键词 空对空导弹 四元数 数学模型 建模 Air-to-air missile Quaternion Mathematical model Modeling
  • 相关文献

参考文献5

二级参考文献5

共引文献5

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部