期刊文献+

基于实例的离散制造系统能耗知识建模与预测 被引量:5

Case-based energy-consuming knowledge modeling and prediction of discrete manufacturing system
原文传递
导出
摘要 由于离散制造系统的能耗具有复杂性和不确定性等特点,急需一种数据驱动的通用能耗预测方法.对此,首先依据知识建模方法搭建面向能耗的知识模型,以指导能耗数据与工艺信息、排产信息的有机结合;然后,将数值型和字符型输入变量进行综合考虑:先采用功率波动程度计算属性的重要性,再通过层次实例检索方法来保证字符型输入变量的一致性或相关性;最后,通过检索相似工步来实现能耗预测.仿真实验表明所提出的方法可行且有效. Considering the complexity and uncertainty of energy consumption in a discrete manufacturing system, a general data-driven energy prediction method is urgently required. Therefore, a knowledge model oriented to energy consumption is built using a knowledge modeling method to guide the combination of the energy consumption data,the process plan and the production schedule. Then, character input variables and numeric input variables are both considered in the process of energy consumption prediction. The attribute importance is calculated by the degree of power fluctuation, and the consistency or correlation of character input variables are guaranteed by using the hierarchical case retrieval method. Finally, energy consumption is predicted by retrieving similar working-steps. The experimental simulation shows the feasibility and effectiveness of the proposed method.
作者 徐彬梓 王艳 纪志成 XU Bin-zi;WANG Yan;JI Zhi-cheng(College of Internet of Things and Engineering,Jiangnan University,Wuxi 214122,China)
出处 《控制与决策》 EI CSCD 北大核心 2019年第1期9-17,共9页 Control and Decision
基金 国家自然科学基金项目(61572238) 江苏省杰出青年基金项目(BK20160001)
关键词 能耗 知识 离散制造 实例推理 数据驱动 energy consumption knowledge discrete manufacture case-based reasoning data-driven
  • 相关文献

参考文献5

二级参考文献73

  • 1武美萍,廖文和.INTERNET-BASED MACHINING PARAMETER OPTIMIZATION AND MANAGEMENT SYSTEM FOR HIGH-SPEED MACHINING[J].Transactions of Nanjing University of Aeronautics and Astronautics,2005,22(1):42-46. 被引量:5
  • 2蒋亚军,娄臻亮,李明辉.基于模糊粗糙集理论的模具数控切削参数优化[J].上海交通大学学报,2005,39(7):1115-1118. 被引量:9
  • 3李建广,姚英学,刘长清,黎世文.基于遗传算法的车削用量优化研究[J].计算机集成制造系统,2006,12(10):1651-1656. 被引量:27
  • 4刘忠和,钟建琳.基于人工神经网络的铣削参数优化[J].机械设计与制造,2007(7):103-104. 被引量:2
  • 5TRIDECH S, CHENG K. Low Carbon mamufacturing: Characterization, theoritical models and implementation [C]//The 6th International Conference on Manufacturing Research(ICMR08), 2008: 403-412.
  • 6SARAVANAN R, ASOKAN P, VIJAYAKUMAN K. Machining parameters optimization for turning cylindrical stock into a continuous finished profile using genetic algorithm(GA) and simulated annealing(SA)[J]. International Journal of Advanced Manufacturing Technology, 2003, 21(1): 1-9.
  • 7SCHLOSSER R, KLOCKE F, LUNG D. Sustainability in manufacturing: Energy consumption of cutting processes[C]//Proceedings of the 8th Global Conference on Sustainable Manufacturing Nov. 22-24, 2010, Abu DhabiUniversityUAE: CIRP, 2010- 85-89.
  • 8RAJEMI M F, MATIVENGA P T, ARAMCHAROEN A. Sustainable machining: Selection of optimum turning conditions based on minimum energy considerations[J]. Journal of Cleaner Production, 2010 (18): 1059-1065.
  • 9MORI M, FUJISHIMA M, INAMASU Y, et al. A study on energy efficiency improvement for machine tools[J]. Manufacturing Technology, 2011, 60(1): 145-148.
  • 10艾兴,肖诗刚.切削用量简明手册[M].第3版.北京:机械工业出版社,1994.

共引文献129

同被引文献44

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部