期刊文献+

柱环腔中的量子电动力学效应 被引量:3

Effects of quantum electromagnetic dynamics in a cylindrical ring cavity
原文传递
导出
摘要 研究以同轴不同半径柱面围成的导体柱环腔体中电磁场真空零点振动模式所给出的宏观量子效应 .零点振动模式通过求解柱环空腔边界条件下无源的Maxwell方程组获得 .得到了双柱面同心柱环中单位长度和单位面积的且是有限的真空能量 ,即Casimir能量 .这有限的Casimir能量可以分解为独立而且收敛的三部分 ,它们分别来自内柱面、外柱面和柱环之中 .对多柱面同心柱环 ,Casimir能量可分解为独立的 (2n— 1)部分 (n为柱面数 ) .柱环是类似于平行板的几何结构 .但柱环所给出的Casimir能量和Casimir势能系数是随着柱环间隔变化的 ,不同于平行板是常数的情况 . A charge-free conductor cavity has macroscopic quantum effects that can be explained by the physical picture of vacuum zero-point energy. This paper studies the macroscopic quantum effects in the conductive cylindrical ring, in terms of zero-point oscillating modes. The zero-point oscillating modes are obtained through solving the Maxwell equations without sources under the boundary condition of the cylindrical conductor surfaces. The vacuum energy (i.e. the Casimir energy) per unit length and area for the double-layer concentric cylindrical ring is obtained and it can be decomposed into the three independent and convergent parts that come from the interior, exterior cylindrical surfaces and the portion between them, respectively. For an n-layer cylindrical ring, its Casimir energy comprises of (2n - 1) parts, all of which are convergent. Topologically, the geometric structure of the cylindrical, ring is analogous to that of the parallel plates. However, the Casimir energy of the cylindrical ring has the non-trivial property that the coefficients of the Casimir energies and potentials vary with the interval between the cylindrical surfaces, compared to the constant coefficient for the parallel plates. This non-trivial property will give rise to an additional Casimir force that does not exist in the case of parallel plates.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2003年第4期813-822,共10页 Acta Physica Sinica
基金 中国科学院知识创新重要工程项目 (批准号 :KJCX2 -N11) 中国科学院知识创新工程方向性项目 (批准号 :2 60 10 0 3 1) 国家重点基础研究发展规划 (批准号 :G2 0 0 0 0 7740 0 )资助的课题~~
关键词 柱环腔 量子电动力学 CASIMIR效应 零点能 导体 平行板 Casimir effects cavity of cylindrical ring zero-point energy quantum electro-magnetic dynamics
  • 相关文献

参考文献12

  • 1[1]Candelas P 1982 Ann. Phys. (NY) 143 241
  • 2[2]Bordag M, Mohideen U, Mostepanenko V M 2001 Phys. Rep. 353 1
  • 3[4]Casimir H B G and Polder D 1948 Phys. Rev. 73:360
  • 4[5]Casimir H B G 1956 Physica 19 846
  • 5[6]Boyer T H 1968 Phys. Rev. 174 1764
  • 6[7]Lukosz W 1971 Physica 56 109
  • 7[8]DeRaad L L Jr and Milton K A 1981 Ann. Phys. (NY) 136 229
  • 8[9]Gosdzinsky P and Romeo A 1998 Phys. Lett. B 441 265
  • 9[10]Ambjorn J and Wolfram S 1983 Ann. Phys.(NY) 147 1
  • 10[11]Leseduarte S and Romeo A 1996 Ann. Phys.(NY) 250 448

同被引文献60

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部