摘要
利用复变方法和积分方程理论,讨论带任意裂纹的各向同性弹性狭长体的基本问题.通过适当的函数分解和积分变换,将问题简化为一正则型奇异积分方程.对方程解的情况和求解方法进行了研究,并导出裂纹尖端的应力强度因子.
In this paper,the fundamental problem for an infinitely long elastic strip with arbitrary cracks is studied with the method of complex variables and the theory of integral equations.By using the proper decomposition of functions and integral transformation,the problem is reduced to some singular integral equation of normal type which is proved to be solvable with undetermined constants suitably chosen.The method of solving the integral equation is given and the stress intensity factors on the tips of cracks are also derived.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2003年第1期15-21,共7页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
广东省自然科学基金(010446)
关键词
裂纹
复变方法
积分方程
应力强度因素
cracks
complex variable method
integral equation
stress intensity factor