期刊文献+

基于佳点集遗传算法求解Job-shop调度问题 被引量:3

Solving Job-Shop Scheduling Problem Using Good Point Set Based Genetic Algorithm
下载PDF
导出
摘要 1.介绍 Job-shop调度同题(JSSP)是极为困难的带约束组合优化问题,是NP难的.典型的Job-shop调度问题可描述为n个工件要在m台机器上加工,每个工件有其特定的加工工序,每道工序加工时间已知,并符合以下假设[1]: Job-shop is the representative of constrained combinatorial optimization problem and extremely hard to solve. By analyzing the crossover operation, that is choosing a point in the family whose ancestors have schema of high fitness, we utilize the principles of good point set in number theory and redesign the crossover operator. Then a new GA called good point set based GA is presented and applied to solve the benchmark problem of MT06 and MT10. The experimental result shows this new GA works well.
作者 程军盛 张铃
出处 《计算机科学》 CSCD 北大核心 2002年第4期67-68,共2页 Computer Science
基金 973基金(G98030509)
关键词 JOB-SHOP调度问题 组合优化问题 佳点集遗传算法 启发式算法 Good point set based Genetic algorithm, Job-shop scheduling problem, Combinatorial optimization
  • 相关文献

参考文献7

  • 1Dimopoulos C,Zalzala A M S. Recent Developments In Evolutionary Computation For Manufacturing Optimization: Problems, Solutions, And Comparisons. http://www. cee. hw. ac. uk/~ ali/Publications/journal/IEEE-ec- 1. pdf
  • 2Liaw C F. A hybrid genetic algorithm for the open shop scheduling problem. European Journal of Operational Research, 2000,124: 28~42
  • 3张铃,张钹.佳点集遗传算法[J].计算机学报,2001,24(9):917-922. 被引量:165
  • 4张铃 张钹.遗传算法机理的研究[J].计算机学报,.
  • 5Hue X. Genetic Algorithms for Optimization: Background and Application. http://www. epcc. edac. uk/epcc-tec/documents
  • 6Bierwirth C,Mattfeld D C. Production Scheduling and Rescheduling with Genetic Algorithm. http://www. icaen. uiowa. edu/~ie238/lecture/Paper1. pdf
  • 7Bierwirth C,Mattfeld D C,et al. On Permutation Representation for Scheduling Problem. http://citeseer. nj. nec. com/bierwirth96permutation. html

二级参考文献9

共引文献164

同被引文献24

  • 1Michalewicz Z, Schoenauer M. Evolutionary algorithm for constrained parameter optimization problems [J]. Evolutionary Computation, 1996, 4(1): 1-32.
  • 2Mezura-Montes E, Coello Coello CA. On the usefulness of the evolution strategies self-adaptation mechanism to handle constraints in global optimization [R]. Mexico City: CINVESTAV-IPN, 2003.
  • 3Asselmeyer T, Ebeling W, Ros' e H, Evolutionary strategies of optimization[J]. Physical Review E, 1997, 59(1) : 1171-1180.
  • 4Mezura-Monte's E. Alternative techniques to handle constraints in evolutionary optimization[D]. Computer Science Section, Electrical Engineer Department, Mexico City: CINVESTAV-IPN, 2004.
  • 5Mezura-Montes E, Coello Coello CA. A simple multimembered evolution strategy to solve constrained optimization problems[J]. IEEE Trans on Evolutionary Computation, 2005, 9(1): 1-17.
  • 6Qingfu Zhang, Yiu-Wing Leung. An orthogonal genetic algorithm for multimedia multicase routing[J]. IEEE Trans on Evolutionary Computation, 1999, 3 (1):53- 62.
  • 7Yiu-Wing Leung , Yuping Wang. An orthogonal genetic algorithm with quantization for global numerical optimization [J ]. IEEE Trans on Evolutionary Computation, 2001, 5(1): 41-43.
  • 8Jinn-Tsong Tsai, Tung-Kuan Liu, Jyh-Horng Chou. Hybrid taguchi-genetie algorithm for global numerical optimization [ J ]. IEEE Trans on Evolutionary Computation, 2004, 8(4): 365-377.
  • 9Xiao C X, Cai Z X. Using good nodes set principle to evolution strategy for constrained optimization[C]. The 26th Chinese Control Conf. Zhangjiajie, 2007.. 722- 726.
  • 10Xiao C X, Cai Z X, Wang Y. Incorporating good nodes set principle into evolution strategy for constrained optimization[C]. ICNC2007. Haikou, 2007:243-247.

引证文献3

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部