期刊文献+

广义对称正则长波方程的显式精确解析解 被引量:2

Explicit and exact analytic solutions to generalized symmetric regularized long wave equations
下载PDF
导出
摘要 首先对具耗散项的广义对称正则长波方程utt-uxx-γuxxt-uxxtt+f(u) xt=0 ,(γ≠ 0 )的孤立波解建立了一个关系式 .据此推知 :具耗散项的广义对称正则长波方程不可能有钟状孤立波解 ,而只可能有扭状孤立波解或钟状扭状复合型孤立波解 .广义对称正则长波方程utt-uxx-uxxtt+f(u) xt=0可能既有钟状孤立波解 ,又有扭状孤立波解 .进而求出了上述两个方程的显式精确孤立波解。 Firstly, we establish a formula satisfied by the solitary wave solutions of the generalized symmetric regularized long wave equation with dissipation term u tt -u xx -γ u xxt -u xxtt +f(u) xt =0 . It is shown that the generalized symmetric regularized long wave equation with dissipation term has not bell profile solitary wave solutions but may have kink profile solitary wave equations or solitary wave solutions of a kind of the compound bell_type with kink_type.However, the generalized symmetric regularized long wave equation u tt -u xx -u xxtt +f(u) xt =0 may have not only bell profile solitary wave solutions but also kink profile solitary wave solutions. Furthermore, all expected solitary wave solutions, singular travelling wave solutions and periodic wave solutions of triangular function type are obtained.
作者 尚亚东
机构地区 广州大学理学院
出处 《广州大学学报(自然科学版)》 CAS 2003年第2期101-105,共5页 Journal of Guangzhou University:Natural Science Edition
关键词 广义对称正则长波方程 显式精确解析解 耗散项 孤立波解 奇异行波解 三角函数状周期波解 generalized symmetric regularized long wave equation exact solutions solitary wave solutions singular manifold method
  • 相关文献

参考文献7

  • 1张卫国.Burgers与组合KdV混合型方程的精确解[J].数学物理学报(A辑),1996,16(3):241-248. 被引量:26
  • 2Seyler C E, Fanstermmmacler D C. A symmetric regularized long wave equation[J]. Phys. Fluids., 1984,27(1):4-7.
  • 3Bogolubsky I L. Some examples of inelastic soliton interaction[J]. Comput. Phys. Comm., 1977,13(2):149- 165.
  • 4Rosenau P J, Schwaraneier J L. On similarity solution of Boussinesq type equations[J]. Phys. Lett., 1986,115A(3) :75 - 77.
  • 5Clarkson P A. New similarity reductions and Painleve analysis for the symmetric regularized long wave and modified Benjamin-Bona-Mahony equations[J]. J . Phys . A : Gen . Math., 1989,22(18):3 821-3 848.
  • 6CHEN Lin. Stability and instability of solitary wave for generalized symmetric regularized long wave equations[J]. Physica D, 1998,118(2): 53-68.
  • 7尚亚东.广义SRLW方程的Painlevé分析和精确解[J].宁夏大学学报(自然科学版),2000,21(3):199-202. 被引量:1

二级参考文献6

  • 1戴世强,中国科学.A,1990年,33卷,153页
  • 2潘秀德,应用数学和力学,1988年,9卷,3期,281页
  • 3管克英,中国科学.A,1987年,1卷,64页
  • 4戴世强,应用数学和力学,1982年,3卷,6期,721页
  • 5尚亚东,兰州大学学报,1998年,35卷,1期,11页
  • 6尚亚东.两类非线性波动方程的精确解[J].兰州大学学报(自然科学版),1999,35(1):11-17. 被引量:4

共引文献25

同被引文献17

  • 1李荣华.广义差分法及其应用[J].吉林大学自然科学学报,1995(1):14-22. 被引量:13
  • 2陈传军.一维半导体器件的特征有限体积元方法及分析[J].高等学校计算数学学报,2005,27(3):279-288. 被引量:3
  • 3曹艳华.一维线性Sobolev方程广义差分法[J].高等学校计算数学学报,2006,28(2):122-133. 被引量:2
  • 4王廷春,张鲁明.对称正则长波方程的拟紧致守恒差分逼近[J].数学物理学报(A辑),2006,26(B12):1039-1046. 被引量:24
  • 5Seyler E C, Fanstermmacher D C. A symmetric regularized long wave equation [J]. Phys Fluids, 1984, 27(1): 4-7.
  • 6Wang Tingchun, Zhang Luming ,Chen Fangqi. Conservative sehemes for the symmetric regularized long wave equations [J]. Applied Mathematics and Computation, 2007, 190: 1063-1080.
  • 7Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservative laws II: general framework [J]. Mathematics of Computation, 1989, 52: 411-435.
  • 8Cockburn B, Shu C W. The Runge-Kutta local projection-discontinuous Galerkin finite element method for scalar conservative laws [J]. Mathematical Modeling and Numerical Analysis, 1991, 25: 337-361.
  • 9Zhang Q, Shu C W. Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws [J]. SIAM J Numer Anal, 2004, 42: 641- 666.
  • 10Ciarlet P. The Finite Element Method for Elliptic Problem [M]. North-Holland, Amsterdam, 1975:120-135.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部