期刊文献+

基于步态的身份识别 被引量:158

Gait-Based Human Identification
下载PDF
导出
摘要 提出了一种简单有效的自动步态识别算法 .对于每个序列而言 ,一种改进的背景减除方法用于检测行人的运动轮廓 ;然后 ,这些时变的 2D轮廓形状被转换为对应的 1D距离信号 ,同时通过特征空间变换来提取低维步态特征 ;基于时空相关或归一化欧氏距离度量 ,标准的模式分类技术用于最终的识别 .实验结果表明该算法不仅获得了令人鼓舞的识别性能 ,而且拥有相对较低的计算代价 . This paper proposes a simple and efficient motion based gait recognition algorithm by spatial temporal silhouette analysis. For each image sequence, an improved background subtraction algorithm and a simple correspondence procedure are first used to segment and track the moving silhouettes of a walking figure from the background. Then, eigenspace transformation based on the traditional principal component analysis (PCA) is applied to time varying distance signals derived from a sequence of silhouette images to reduce the dimensionality of the input feature space. Supervised pattern classification techniques are finally performed in the lower dimensional eigenspace for recognition. This method can implicitly capture the structural and transitional characteristics of gait, especially biometric shape cues. Extensive experimental results on outdoor image sequences demonstrate that the proposed algorithm has an encouraging recognition performance with relatively lower computational cost.
出处 《计算机学报》 EI CSCD 北大核心 2003年第3期353-360,共8页 Chinese Journal of Computers
基金 国家自然科学基金 ( 6982 5 10 5 60 10 5 0 0 2 ) 中国科学院自动化研究所创新基金 ( 1M0 2J0 4)
关键词 身份识别 计算机视觉 图像序列 生物特征识别 主元分析 时空相关 自动步态识别算法 模式识别 biometrics gait recognition background subtraction PCA spatio temporal correlation
  • 相关文献

参考文献21

  • 1Wang L, Hu W, Tan T. Recent developments in human motion analysis. Pattern Recognition,2003,36(3):585~601
  • 2Phillips J, Moon H, Rizvi S, Rause P. The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090~1104
  • 3Jain A, Bolle R, Pankanti S. Biometrics: Personal Identification in Networked Society. Boston:Kluwer Academic Publishers, 1999
  • 4Nixon M, Carter J, Cunado D, Huang P, Stevenage S. Automatic gait recognition. In: Proceedings of BIOMETRICS Personal Identification in Networked Society, 1999. 231~249
  • 5Niyogi S, Adelson E. Analyzing and recognizing walking figures in XYT. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, USA, 1994. 469~474
  • 6Cunado D, Nixon M, Carter J. Using gait as a biometric, via phase-weighted magnitude spectra. In: Proceedings of International Conference on Audio- and Video-based Biometric Person Authentication, Crans-Montana, Switzerland, 1997. 95~102
  • 7Little J, Boyd J. Recognizing people by their gait: The shape of motion. Journal of Computer Vision Research, 1998, 1 (2): 2~32
  • 8Murase H, Sakai R. Moving object recognition in eigenspace representation: Gait analysis and lip reading. Pattern Recognition Letters, 1996, 17: 155~162
  • 9Huang P, Harris C, Nixon M. Human gait recognition in canonical space using temporal templates. Vision Image and Signal Processing, 1999, 146 (2): 93~100
  • 10Shutler J, Nixon M, Harris C. Statistical gait recognition via temporal moments. In: Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation, Austin, Texas, 2000. 291~295

同被引文献1601

引证文献158

二级引证文献676

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部