期刊文献+

工艺路线可变的双资源双目标车间调度优化 被引量:2

Intelligent Optimization of Bi-objective Job-shop Scheduling Using Genetic Algorithms
下载PDF
导出
摘要 将遗传算法与启发式调度规则相结合 ,研究了工艺路线可变的双资源双目标的作业车间调度优化问题。在探讨过程中 ,不仅考虑到了每个工件有几条可行的工艺路线 ,而且考虑到了工件的调度受到机床、工人等资源的制约 ,以及在加工过程中发生的储存费用、机床的加工费用和工人的劳动费用对工件调度的影响 ,设计了以生产周期和生产成本综合优化为目标的适应度函数。启发式调度规则使该算法具有较高的局部搜索效率 ,遗传算法保证了解的全局最优性。最后给出了算例 。 The optimization of job shop scheduling is very important because of its theoretical and practical significance. Much research about it have been reported in recent years. But most of them were about classical job shop. The existence of a gap between scheduling theory and practice has been reported in literature. This work presents a robust procedure to solve bi objective job shop scheduling problems with large number of more realistic constraints such as alternative processing plans for parts, requirement of multiple resource to process an operation (machine tools and worker), which simultaneously addresses the reduction of makespan and the costs of operating and storage during parts processing. A combining genetic algorithm(GA) with heuristic scheduling algorithm has been improved, in which the introduction of heuristic rules makes the algorithm faster and more efficient, while GA surely makes the solution a global optimization. An example of scheduling is given, the results show that this method is efficient.
出处 《机械科学与技术》 CSCD 北大核心 2003年第3期398-401,共4页 Mechanical Science and Technology for Aerospace Engineering
关键词 车间调度 遗传算法 启发式调度算法 双目标目标优化 Heuristic rules Job shop scheduling Genetic algorithms Bi objective scheduling
  • 相关文献

参考文献6

  • 1玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 2何霆,刘飞,马玉林,杨海.车间生产调度问题研究[J].机械工程学报,2000,36(5):97-102. 被引量:105
  • 3Shi G Y. A genetic algorithm to a classic job-shop scheduling problem [J]. International Journal of Systems Science,1997,28(1):25~32.
  • 4Nabil Nasr, Elsayed E A. Job shop scheduling with alternative machines[J]. International Journal Production Research, 1990,28(9) :1595~1609.
  • 5Candido M A B, Khator S K, Barcia R M. A genetic algorithm based procedure for more realistic job shop scheduling problems[J] International Journal Production Research,1998,36(12) :3437~3457.
  • 6Cheng R W, Mitsuo G, Yasuhiro T. A tutorial survey of job-shop scheduling problems using genetic algorithms[J].Computers Industry Engineering, 1996,130(4).

二级参考文献9

共引文献233

同被引文献21

  • 1雷德明,吴智铭.基于个体密集距离的多目标进化算法[J].计算机学报,2005,28(8):1320-1326. 被引量:23
  • 2陈华平,谷峰,古春生,卢冰原.两级排序遗传算法在柔性工作车间调度中的应用[J].系统仿真学报,2006,18(6):1717-1720. 被引量:12
  • 3刘志刚,李言,李淑娟.基于蚁群算法的Job-Shop多资源约束车间作业调度[J].系统仿真学报,2007,19(1):216-220. 被引量:20
  • 4胡建军,唐常杰,段磊,左劼,彭京,元昌安.基因表达式编程初始种群的多样化策略[J].计算机学报,2007,30(2):305-310. 被引量:44
  • 5Shafaei R, Brunn P. Workshop scheduling using practical ( inaccurate) data Part 1 : The performance of heuristic scheduling rules in a dynamic job shop environment using a rolling time horizon approach [ J]. International Journal of Production Research, 1999,37 ( 17 ) :3913 - 3925.
  • 6Byung J, Hyung R, Hyun S.. A hybrid genetic algorithm for the job shop scheduling problems [ J ]. Computers & Industrial Engineering, 2003,45:597-613.
  • 7玄光南 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 8MOHAMMAD Kazem Sayadi, REZA Ramezanian, Nader Ghaffari-Nasab. A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems [ J ]. International Journal of Industrial Engineering Computations,2010 ( 1 ) : 1 - 10.
  • 9YANG Xinshe. Muhiobjective firefly algorithm for continuous optimization[ J ]. Engineering with Computers, 2013 ( 29 ) : 175 - 184.
  • 10KARTHIKEYAN S, ASOKAN P, NICKOLAS S. A hybrid discrete firefly algorithm for multi-objective flexible job shop scheduling problem with limited resource constraints [ J ]. Adv Manuf Techno1,2014 (72) : 1567 - 1579.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部