期刊文献+

Sorption of a triazol derivative by soils: importance of surface acidity 被引量:3

Sorption of a triazol derivative by soils: importance of surface acidity
下载PDF
导出
摘要 The sorption of a triazol derivative, 1-(4-chlorophenyl)- 4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)penten-3-ol with a common name of S3307D, on fifteen soils and three H2O2-treated soils was investigated. The sorption isotherm for each untreated and treated soil was non-linear, and was best fitted to Freundlich sorption equation. Soils containing high amount of clay content or organic matter or both sorbed much higher amounts of the chemical than soils that had low contents of these soil constituents. H2O2-treated soils showed considerable sorptive affinity for S3307D. It was concluded that both organic matter and mineral fraction in natural soils contributed to the sorption of the basic compound. Sorption by the H2O2 treated soils increased as suspension pH decreased, but all suspension pHs exceeded the pKa of the compound by more than two units. This implies that organic base protonation can occur on surfaces of soil components, and surface acidity (exchangeable acidity ) is important in sorption process of the organic base rather than suspension pH. The sorption of a triazol derivative, 1-(4-chlorophenyl)- 4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)penten-3-ol with a common name of S3307D, on fifteen soils and three H_2O_2-treated soils was investigated. The sorption isotherm for each untreated and treated soil was non-linear, and was best fitted to Freundlich sorption equation. Soils containing high amount of clay content or organic matter or both sorbed much higher amounts of the chemical than soils that had low contents of these soil constituents. H_2O_2-treated soils showed considerable sorptive affinity for S3307D. It was concluded that both organic matter and mineral fraction in natural soils contributed to the sorption of the basic compound. Sorption by the H_2O_2 treated soils increased as suspension pH decreased, but all suspension pHs exceeded the pKa of the compound by more than two units. This implies that organic base protonation can occur on surfaces of soil components, and surface acidity (exchangeable acidity ) is important in sorption process of the organic base rather than suspension pH.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第3期383-387,共5页 环境科学学报(英文版)
关键词 土壤 吸附 有机物 酸性 PH sorption organic base soil surface acidity
  • 相关文献

参考文献2

二级参考文献3

共引文献10

同被引文献24

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部