期刊文献+

基于人工神经网络的Cu-Cr-Zr合金时效强化性能预测研究 被引量:6

Study of Properties in Age Hardening Cu-Cr-Zr Alloy by an Artificial Neural Network
下载PDF
导出
摘要 本文首次利用神经网络对Cu Cr Zr合金时效温度和时间与硬度和导电率样本集进行学习 ,采用改进的BP网络算法———Levenberg Marquardt算法 ,建立了时效强化工艺BP神经网络模型。预测结果表明 :该BP神经网络可以充分挖掘样本蕴含的领域知识 。 The paper proposes the use of a supervised artificial neural network (ANN) to model the non-linear relationship between parameters of age hardening processes and hardness and conductivity properties of CuCrZr alloy. The improved model is developed for the first time by the levenberg- Marquardt training algorithm. A basic repository on the domain knowledge of age hardening processes is established via sufficient data mining by the network. The results show that the ANN system is effective and successful for predicting and analyzing the properties of Cu-Cr-Zr alloy.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2003年第3期383-386,共4页 Journal of Materials Science and Engineering
基金 河南省重大科技攻关资助项目(0 1 2 2 0 2 1 30 0 )
关键词 人工神经网络 CU-CR-ZR合金 时效强化 LEVENBERG-MARQUARDT算法 半导体元器件 材料 铜铬锆合金 Cu-Cr-Zr alloy age hardening levenberg-marquard algorithm artificial neural network
  • 相关文献

参考文献11

  • 1刘延利,钟群鹏,张峥.基于人工神经网络的预腐蚀铝合金疲劳性能预测[J].航空学报,2001,22(2):135-139. 被引量:26
  • 2樊宁,艾兴,邓建新.利用人工神经网络预测复相陶瓷材料组分含量的研究[J].硅酸盐学报,2001,29(6):569-575. 被引量:9
  • 3张智星 孙春在 [日]水谷英二 等.神经—模型和软计算[M].西安:西安交通大学出版社,1998.156-215.
  • 4HO J. RYU. Effect of thermomechanical treatment on microstructure and properties of Cu-base leadframe alloy[J]. Journal of Materials Science ,2000,35:3641 - 3646.
  • 5Naotsugu I. Behavor of precipitation and recrystallization affect upon texture of Cu-Cr-Zr alloy[J]. Journal of the Japan Copper and Brass Research Association, 1993,32:115 - 121.
  • 6H. I. CHOI. Fabrication of high conductivity copper alloys by rod milling[J]. Journal of Materials Science Letters, 1997,16:1600 -1602.
  • 7L. Rawtani, Modeling of material behavior data in a functional form suitable for neural network representation[J]. Computtional Materials Science, 1999,15:493 - 502.
  • 8Le-Hua Qi. Research on prediction of the processing parameters of liquid extrusion by BP network[J]. Journal of Materials Processing Technology, 1995,95: 232 - 237.
  • 9Joines JA, White M W. Improved Generalization Using Robust Cost Functions [C]. IEEE/INNS Int Joint Conference of Neural networks, New York, IEEE Press,1992:911-918.
  • 10I. a. Basheer. Artificial neural network:fundamentals, computing,design, andapplication [ J ]. Journal of Microbiological Methods,2000,43:3 - 31.

二级参考文献9

共引文献32

同被引文献68

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部