摘要
Ti O2-supported Pd Au bimetallic nanoparticles(NPs) with small size and good dispersity were prepared by the room-temperature ionic liquid-assisted bimetal sputtering, which is simple, environmentally friendly, and free of additives and byproducts. Pd/Au atomic ratio can be tuned by controlling the sputtering conditions simply. High catalytic activity was found in Pd Au–NPs–Ti O2 hybrids for solvent-free selective oxidation of 1-phenylethanol using O2 as the oxidant at the low temperature of 50 °C and low pressure of 1 atm. It was found that Pd/Au ratio strongly affected the catalytical activity, and the highest conversion of about 35 % and turnover frequency of about 421 h-1were achieved at 1:1 of Pd/Au atomic ratio. The synergistic effect in Pd Au NPs was also discussed based on the comprehensive characterization results.The present approach may offer an alternative platform for future development of green-chemistry compatible bimetallic nanocatalysts.
TiO2-supported PdAu bimetallic nanoparticles (NPs) with small size and good dispersity were prepared by the room-temperature ionic liquid-assisted bimetal sputtering, which is simple, environmentally friendly, and free of additives and byproducts. Pd/Au atomic ratio can be tuned by controlling the sputtering conditions simply. High catalytic activity was found in PdAu-NPs-TiO2 hybrids for solvent-free selective oxidation of 1-phenylethanol using O-2 as the oxidant at the low temperature of 50 degrees C and low pressure of 1 atm. It was found that Pd/Au ratio strongly affected the catalytical activity, and the highest conversion of about 35 % and turnover frequency of about 421 h(-1) were achieved at 1:1 of Pd/Au atomic ratio. The synergistic effect in PdAu NPs was also discussed based on the comprehensive characterization results. The present approach may offer an alternative platform for future development of green-chemistry compatible bimetallic nanocatalysts.
基金
supported by the National Natural Science Foundation of China(No.61274019)
the Collaborative Innovation Center of Suzhou Nano Science & Technology
the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)